
Response of a double system beam and string 
with an elastic layer to the dynamic excitations 

L. Frýba, C. Fischer & Sh. Urushadze 
Institute of Theoretical and Applied Mechanics, 
Academy of Sciences of the Czech Republic, Prague 

Abstract 

The beam with an axial force is coupled with the pretensiled string by an elastic 
layer of Winkler type. It is subjected to a row of moving forces. The theoretical 
model corresponds to a prestressed bridge. The governing equations form a 
coupled set of partial differential equations which are solved using the Fourier 
and Laplace-Carson integral transformation methods. A simple experimental 
model was constructed in a form of a plexiglass beam and two strings bound 
together with several spring and damping elements. The beam was excited by an 
electro-magnetic exciter and its response was measured at several places. Three 
steps of stiffness and damping characteristics of the elastic layer were proved to 
show their effect on the dynamic response of the double system. Its low response 
is searched. 
Keywords:  prestressed beam, string, dynamic excitation. 

1 Introduction 

Many years standing effort has been devoted to damp the dynamic effects of 
both the highway and railway vehicles when they cross a bridge. For that 
purpose, a lot of systems were developed, e.g. elastic supports of bridges, 
triangular falsework system with controlled damping, double systems with two 
beams or two strings connecting together with an elastic layer, etc. They are 
briefly described in [1] and cited in details in [2] and [3]. They are, especially, 
the papers of Kawanazoe et al. [4] and Oniszczuk [5], who firstly introduced the 
double beam and double string system, respectively. However, each of the 
systems mentioned above shows its technical or economic effectiveness only in 
some specific conditions. 
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     On the other hand, the prestressed bridges, world wide used for highway as 
well as railway bridges of small and medium spans, form naturally a double 
system with two elements:  beam and pretensiled strings. That’s the reason, why 
an idea arose – to bind both the elements with an elastic layer and dampers to 
diminish the dynamic response. 
     The aim of the present paper is to show the effect of the double system beam 
and string and put a question on the effectiveness of damping. 

2 Theory 

The Fig. 1 represents the theoretical model of a beam, pretensiled string and an 
elastic layer subjected to a row of axle forces. The axle forces 

, 1, 2,3,..., ,nF n N=  move with a constant speed c from the left hand side to 
the right one. The simple supported beam and string provide the span  l. The 
beam is subjected to an axial force 1N  (generally tension), while the string is 

tensed by a force  2N  (in practice, of course,  1 2N N= − ). An elastic layer of 
Winkler type binds together both the carrying elements, its characteristic is k 
[N/mm 2 ] and its viscous damping  1dω  or  2dω , respectively. 

 

 

Figure 1: Theoretical model. 

     A system of partial differential equations describes the dynamic behaviour of 
the Bernoulli-Euler beam and string: 
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     The following notations were applied: 
     ( , ), 1, 2iv x t i = – vertical deflection of the beam (i=1) and the string (i=2), 
respectively, at place x and time t, 
     E, I – modulus of elasticity and inertial cross-section moment, respectively, of 
the beam, 
     iµ – mass of the beam (i=1) and of the string (i=2), respectively, per unit 
length, 
     ( )xδ  –  Dirac delta function, 

     ( ) ( ) ( )n n nt h t t h t Tε = − − −  –  the function describing the position of the 
n-th force with respect to the beam, 
     ( ) 0 for h t t= <0 or ( ) 1h t = for t≥ 0, respectively – Heaviside unit 
function, 
     nd  – distance of the n-th force from the first one, 1d =0, 

      
/ ; ( ) / ,

.
n n n n

n n

t d c T l d c
x ct d
= = +
= −

 

 
     The boundary and initial conditions, when the first force enters the beam, 
yield: 

" "
1 1 1 1 2 2(0, ) (0, ) ( , ) ( , ) (0, ) ( , ) 0,v t v t v l t v l t v t v l t= = = = = =      (3) 

( ,0) ( ,0) 0, 1,2 ,i iv x v x i= = =�                              (4) 
where the primes and dots denote the derivatives with respect to x or t, 
respectively. 
     Several natural frequencies appear in the system (1) and (2) (without 
damping), which characterize the dynamic behaviour of individual elements: 
     The circular natural frequency of a simple beam without string and axial force 
yields: 
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that one with the axial force 1N  (tension) but without the string: 
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while this one of the string with an axial force  2N  
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     Further on, the natural frequencies of the elastic layer 
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and, finally, the circular natural frequency of the coupled system beam and string 
reads: 

1/ 2
2 2 2 2 2 2 2 2
1,2 1 2 1 2 1 2
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The forced frequency of the moving force is: 

.c
l
πω =                                                (10) 

3 Solution 

For the solution of eqns (1) and (2), the Fourier integral transformation method is 
applied, [6], in the variable  x  
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and the Laplace-Carson method in the variable t: 
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     The transformed solution is received after the application of eqns (11) and 
(13): 
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     In the first stage, we do not assume the damping ( 0)diω = , then for the 
expressions 
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the transformation relations (27.54) and (27.56) from [6] may be found 
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where 

,A BCD=                                                  (25) 
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     In this way, the resulting deflections of the beam and string appear with 
respect to (12) and (14): 
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where the mutual relation (27.10) from [6] is used. 

4 Numerical results     

The deflection-time histories were calculated for several hundreds of cases in 3 
series   of different bridges. The eqn  (29) was used for the undamped series, 
while for the damped cases, the inverse Fourier transformation and the ordinary 
differential equation with direct integration proceeded. The following case is de-
monstrated here as an example:  series C with parameters:  
l=30 m, E=3.2×104 N/mm2, I=1.347×1012 mm4,  µ1=1.1×10-2 Ns2/mm2, F = 
=4.8×105 N, N2= 5.6×106 N, k=100 Ns2/mm2, µ2=0.002 Ns2/mm2, ωd1,2=0.1 s-1 at 
low velocity 5 km/h and at speed 70 km/h .The responses of the beam mid- spans 
(in dimensionless form) are depicted in Figs 2 and 3. A row of 10 vehicles with 
axle loads F1=F3= 1.6×105 N, F2= F4= 4.8×105 N in distances d1= 0, d2= 3 m, 
d3= 12 m, d4 = 15 m (valid for Czech standard highways) and with the gaps of 9 
m between the vehicles were assumed. 
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Figure 2: Deflection-time history at 
5 km/h. 

 

Figure 3: Deflection-time history at 
70 km/h. 

     The  Figs 2 and 3 symbolize the great effect of the speed of moving forces. It 
proves again the conclusions in [6] and, moreover, the Fig. 3 shows the 
possibility of resonance vibration, [1]. The lines of 1( )v t  and 2 ( )v t almost 
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coincide in this case.  It was derived in [2] and [3], that the eqns (1) and (2) 
depend on 6 dimensionless parameters. Then, it is difficult, particularly  in 
practice, to develop the materials corresponding to the severe conditions for the 
parameters. Further on, the results in [2] and [3] show the ranges of parameters, 
which provide a low response of the beam subjected to a moving force. 

 

 

 
 
 
 
 
 
 

Figure 4: Laboratory model and cross-section of the beam. 

5 Experiments      

A simple laboratory model of the investigated problem was constructed. A 
plexiglass beam is prestressed by two steel wires, see Figs 4 and 5, whereas the  
electromagnetic exciter stimulates a harmonic force to the beam at several 
places. The response of the beam was also measured at several places. The 
special spring and damping elements, see Fig. 6, imititate the elastic layer. 
Several number of elements, distributed along the beam, were used for 
experiments.. The spring stiffness and damping characteristics were changed in 
three steps : maximum (max), mean (mean) and minimum (min) using the spring 
and liquid parts of the elements. 
     Figs 7 and 8 represent the beam acceleration v��  (devided by the exciting 

force F ) at 2 1000N N= as a function of the three steps mentioned above. The 
figures show,  how the arrangement (max, mean, min) diminishes the beam 
response. The designation MP indicates the measuring point, where MP 6 is 
located at the midspan, while MP 3(4) or MP 9 at one or three quarters of the 
span, respectively. The Fig. 7 shows the beam response to the exciter at the 1-st 
harmonics 5.16 Hz, while the Fig. 8 that one at the 2-nd harmonics 22.18 Hz. 

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 46,
 www.witpress.com, ISSN 1743-355X (on-line) 

Computational Methods and Experimental Measurements XIII  677



Figure 5: Model at laboratory tests. 

 

Figure 6: Spring and damping element. 

6 Conclusions 

The dynamic behaviour of the system beam and string bound together  by an 
elastic layer is analysed. A set of partial differential equations describes the 
problem and is solved using the integral transformation methods. The equations 
are governed by several input parameters and, only in rear cases, the response of 
the beam with an elastic layer may be substantially lower than that one without 
the layer. 
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Figure 7: Damping of the beam with two spring and damping elements. 

Figure 8: Damping of the beam with six spring and damping elements. 

     The  laboratory experiments  show  the  diminishing effect at several steps of 
stifffness and damping characteristics of the speciál elements on the response of 
the beam. The spring and damping elements affect, first of all, the first 
harmonics. A development of new damping layer materials would be necessary. 
Therefore, the outlook for the practical applications of the double system beam 
and strings seems to be rather pessimistic in near future. The main reason for the 
last conclusion is the low ratio of the string and beam masses. 

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

M.P. 2 M.P. 3 M.P. 4

M.P. 5 M.P. 6 M.P. 7

M.P. 8 M.P. 9 M.P. 10

v/F
..

spring     min               min             mean              mean               max                max                min              mean              max
damper  min              mean             min                mean              min                 mean              max               max               max

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

M.P. 2 M.P. 3 M.P. 4

M.P. 5 M.P. 6 M.P. 7

M.P. 8 M.P. 9 M.P. 10

v/F
..

spring     min             min               mean              max                 max               mean               min              mean              max
damper  min            mean              min                mean               min                mean               max               max               max

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 46,
 www.witpress.com, ISSN 1743-355X (on-line) 

Computational Methods and Experimental Measurements XIII  679



Acknowledgements 

The supports of the grants GA CR 103/05/2066 and GA AS CR A200710505 as 
well as the institutional plan ITAM AV OZ 20710524 are gratefully ackowl-
edged. 

References 

[1] Frýba, L., Dynamics of bridges under moving loads (past, present and 
future). In: D. Delgado, R. Calcada, J.M. Goicolea, F. Gabaldo (eds): 
Dynamics of High-Speed Railway Bridges. Porto, pp.25-44, 2005. 

[2] Frýba, L. Fischer, C., Dynamics of prestressed beams coupled with a 
string. In: C.A. Brebbia, G.M. Carlomagno (eds): Computational Methods 
and Experimental Measurements XII. Southampton, Boston, WIT Press, 
pp. 445-454, 2005. 

[3] Frýba, L., Fischer, C., Vibration of coupled system beam and string under 
a moving force. In: C. Soize, G.I. Schuëller (eds): Structural Dynamics 
EURODYN 2005, Paris. Millpress, Rotterdam, Netherlands, Vol. 2, pp. 
1035-1037, 2005. 

[4] Kawazoe, K., Kono, I., Aida, T., Aso, T., Eibisuda, K., Beam-type 
dynamics vibration absorber comprised of free-free beam. Journal of 
Engineering Mechanics, pp. 476-479, 1998.  

[5] Oniszczuk, Z., Transverse vibration of elastically connected double-string 
system, Parts I, II. Journal of Sound and Vibration, 232, Vol. 2, pp. 355-
386, 2000. 

[6] Frýba, L., Vibration of Solids and Structures Under Moving Loads. 3-rd 
ed., Academia, Prague, Thomas Telford, London, 1999. 

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 46,
 www.witpress.com, ISSN 1743-355X (on-line) 

680  Computational Methods and Experimental Measurements XIII


