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Abstract  

In this work, a new method in the elastic-plastic calculation of cracked plates, 
based on shakedown analysis, is presented. This method presents an interesting 
alternative to classical methods in the structure design, especially when the 
loading is variable. It permits, via a simple elastic calculation and a mathematical 
optimisation, the determination of a load domain situated between the elastic and 
the limit load domains, within which the loading can evolve arbitrarily, while 
insuring the reliability of the cracked structure versus the plastic ruin and the 
unstable crack propagation. Also, by taking into account the microstructure of 
the material and the residual stresses, this method allows the determination of a 
stress intensity factor corresponding to the shakedown state. This factor is 
comparable to the fatigue threshold and can be used in the crack admissibility 
criteria.  
Keywords:  shakedown, crack, notch, finite elements analysis, stress intensity 
factor, fatigue threshold. 

1 Introduction 

The structures used in the aeronautics, nuclear plants and naval yards are 
generally plane forms, originally, constituted of ductile material plates (metals 
and alloys) that could support irreversible plastic deformations before to break, 
and that even when they contain manufacture defects or cracks. 
     Cracks constitute the major problem of designers, because they can falsify 
completely the prediction of the conceived structure behavior, by accelerating 
their ruin through brutal propagation of these cracks. 
     When a crack is detected in a system, the designer undertakes an analysis, 
where he will have to explore the brutal rupture risk, the plastic ruin risk and the 
foreseeable evolution of the fissure. 
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     The most often, because of the geometrical singularity fathered by the crack, 
one uses the fracture mechanics, that has replaced the classical design methods. 
     Nevertheless, one knows that the fracture mechanics alone cannot insure that 
a crack is admissible; it attends only what happens at the vicinity of the crack tip 
(front), where the strong constraints and deformations can cause plastic yield of 
the material and therefore the propagation of the crack. 
     Criteria of defect admissibility of the fracture mechanics are naturally local, 
attached to event being able to happen at the crack tip. One knows also that even 
flawless, a structure cannot support unlimited loads, it finishes by bankrupting. 
     To take into account these two modes of ruin and to anticipate the stability 
and the security of the cracked structure, Belouchrani and Weichert [1][2], have 
proposed a new approach by the application of the shakedown theory, that finds 
its preferential application framework when the loading is variable. This new 
approach consists of an extension of the static shakedown theorem to the cracked 
structures. 
     The goal of this work is to present this new prediction method of the cracked 
plate security and reliability, by using the finite elements method and the non-
linear mathematical optimization.   
     The crack is assimilated to a sharp notch according to Neubers material block 
concept [3]. 

2 Formulation of the shakedown theorem for a cracked body 

It has been suggested [1,2], that a cracked body shakes down with respect to a 
given loading history, if a time-independent state of residual stress )x(ρ  exists, 
such that for all times 0t > : 
 Ω=ρ in                     0j,ij   (1) 

 σΓ=ρ on                   0n ijj  (2) 

 ( ) Ω<σρ+σ in    0 ,)t(F yij
c
ij                                        (3) 

With a supplementary condition imposed on the admissible length of a typical 
micro-crack in the material 

 clim aa <                                                   (4) 
Here, F is the plastic yield surface assumed of Von-Mises type, convex by 
definition, yσ  is the yield stress and lima  is the largest admissible crack length 

determined by means of shakedown analysis. In inequality (3), )t,x(cσ  is the 
time-dependent stress state for a purely elastic comparison problem, differing 
from the original problem only by the fact that the material reacts purely 
elastically with the same elastic moduli as for the elastic part of the material law 
in the original problem. For the Lemaitre-Chaboche model [4] adopted for 
ductile fracture, lima  is given by [1,2] 
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Here, 0a  is the initial crack length, L is the positive definite and time-
independent tensor of elastic moduli, m and K are material constants 
characterizing the R-curve parameters and α is the shakedown safety factor. 
     As mentioned before, the problem of stress singularity of the elastic stress 
field deserves special attention for the application of the shakedown theorem to 
cracked structures. In this case, no time-independent field of residual stresses 

)x(°ρ  satisfying inequality (3) can be found and classical shakedown theory 
does not deliver comprehensive results, even for loads for which limit states 
physically exist. We bypass this problem by assimilating the crack tip to a notch, 
following the concept of material block introduced by [3] and used in the same 
spirit as in the present work by [5]. 
     So, following [6], the stress distribution in the neighborhood of the root of the 
notch given by 

 ε+= nrrf                                             (6) 
with, according to figure 1, fr  as the effective notch root radius, ε  as the length 
of the Neuber material block (assumed to be a material constant), and n as the 
factor depending on the loading mode. The factor n is equal to 2 in mode I. 
Following this concept, the effective notch radius is equal to the original notch 
radius augmented of n times the dimension of the Neuber material block. 
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Figure 1: Modified notch and crack. 

     In the case of a sharp crack, the radius at the root of the effective crack, 
denoted fρ , can be obtained just by putting 0r =  in Eqn. (6) 

 ε=ρ nf                                                (7) 
Eqn. (7) indicates implicitly that the crack can be treated as a notch with fρ  
radius. Physically, Neubers material block may be explained as being the sum of 
the minimum number of individual microscopic material particles (such as grains 
in polycrystalline metals). The properties of which may differ from each other, 
but in average they should have the property of the macroscopic material. In [5], 

fρ is put to be about ten times the size of a grain, for the mode I loading. 
Following this suggestion we write 

 ξ≈ε 5                                                   (8) 

3 Shakedown safety factor  
We consider an elastic-plastic plate, subjected to uniaxial loads P(t). The values 
of P(t) vary arbitrarily with time t, but remain between prescribed loads minP  
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and maxP . One then looks for the maximum value of the load factor α , such that 
the plate will shake down under the load )t(Pα . This load factor will be called 
the shakedown load factor SDα  and can be determined as solution of the 
following optimization problem 

 α=α
ρα,

SD max                                            (9) 

with the subsidiary conditions 
Ω=ρ in                0j,ij                                    (10) 

σΓ=ρ on                0n ijj                                    (11) 
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4 Fatigue threshold and influence of the microstructure 

In what follows, the classical concept of existence of a threshold SK  for the 
stress intensity factor IK  in opening mode I is used. 

aK I πσ=                                                (14) 
Therefore, it is assumed that the micro-crack propagation does not occur if  

SI KK <                       (15) 
and the material state is safe against failure by fatigue. Among other parameters, 
the fatigue threshold is influenced by the microstructure of the material. 
Generally, it is admitted that SK  increases with the size of the grain as has been 
observed on ferritic steels by [7–9]. It has been suggested that the dependence 
between SK  and 21ξ  (ξ is the diameter of the grain) are related by a linear 
function [7–9] 

21
11S baK ξ+=                             (16) 

where the dimensions of SK  and ξ are, respectively, [MPa.m1/2] and [m]. Here, 

1a  and 1b  are material constants. 

5 Shakedown stress intensity factor KSD  

With the shakedown load factor SDα  computed for a cracked plate loaded in 
mode I, we will compute the stress intensity factor (Eqn. (14)) corresponding to 
the shakedown state by [10] 

limSDSD aPK πα=                                        (17) 
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6 Numerical examples 

Here, the finite element method is used combined with mathematical 
programming method to maximize the load factor under the subsidiary 
conditions (10)–(13) such that the yield criterion F is not violated in any point of 
the plate and that the admissible crack length lima  remains inferior to its critical 
value ac. The resolution of this mathematical programming problem is 
performed using the code LPNLP [11] that is based on an augmented Lagrangian 
method and the BFGS-algorithm. For the solution one needs: 
− the solution of the purely elastic comparison problem in the sense of 
shakedown analysis, 
− the construction of a time-independent residual stress field. 
     To this end, we use the finite element force method based on the principle of 
minimum complementary energy [12]. This approach uses stress functions for 
the construction of the complementary energy function and represents an 
algebraic dual to the finite element displacement method. This method has been 
used by [13] for the study of limit and shakedown analysis of two-dimensional 
structures. 

6.1 Shakedown loads domain: 

We consider a rectangular cracked plate, subjected to uniform loading (fig.2):  
 

 

Figure 2: Rectangular plate with lateral crack. 
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     The obtained results (fig. 3) show that the safety load is reduced in the 
presence of crack; this reduction depends on the crack length. The load P2 
amends adversely the domain of load and reduces the limits of the load obtained. 
While under the load P1, the influence of the crack is lesser because the stress 
concentration is less important, and is situated on crack lips, not in front of the 
crack tip. 
     Figure 4 shows well that in the case of a cracked plate, the dimensioning 
based on the limit analysis is not recommended if the applied loads could vary in 
an independent way.  
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Figure 3: Shakedown domain. 
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Figure 4: Shakedown and load limits domains. 
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Figure 5: Influence of the ratio a/W on the load factor. 
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Figure 6: Independence of SDK  with a/W. 

     Figure 5 shows that for the cracked plate subjected to the load P2, the value of 
the limit load values agrees with the analytical ones. 

6.2 Shakedown stress intensity factor KSD 

We have computed the stress intensity factor at the shakedown state for different 
crack lengths, the obtained results (fig 6), show that this factor SDK  is crack 
length independent, and it can be considered as the safety parameter against the 
cracked structure ruin, by plasticity and crack propagation for the mode I of 
loading. 
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Figure 7: Relation between SDK  and 21ξ . 

     We have then studied the influence of the grain size on the shakedown stress 
intensity factor SDK , figure 7 shows that the ratio ySD /K σ  varies linearly 

with 21ξ . 

21

y

SD ba
K

ξ+=
σ

.                     (18) 

By comparing this equation with the equation giving the fatigue threshold, one 
notes that the yield stress influences the shakedown stress intensity factor. This 
can be explained by the fact that the shakedown intensity factor is computed by 
taking into account the yield stress and the largest admissible crack length. 

6.3 Comparison of KSD and the fatigue threshold values for some materials 

To validate the proposed approach, a comparison is made between the values of 
SDK  computed in the case of a rectangular plate solicited in mode I, the fatigue 

threshold SK  given by [7] and the shakedown stress intensity factor shK  given 
by [5] for some materials. The characteristics of these materials are given in the 
Table 1. 
     According to the results given in the Table 2, one remarks that the values of 

SDK  agree with the values of shK  given by [5]. On the other hand, one notices 
a disparity with the fatigue threshold SK  given by [7] for materials A and E. 
However, the results indicate that indeed SDK  can be considered as fatigue 
threshold. 
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Table 1:  Diameter of the grain and mechanical material data. 

Material Designation ξ  )m(µ  yσ  (MPa) 

Docol 350 A 8 260 
SS 141147 B 15 185 

HP steel C 29 210 
HP steel D 45 160 
HP steel E 82 120 

Table 2:  Fatigue threshold and shakedown stress intensity factors. 

Material SK  shK  SDK  
A 5.4 8.9 8.43 
B 6.0 7.6 6.49 
C 6.2 9.5 8.22 
D 6.7 8.1 6.8 
E 8.2 7.8 5.73 

 
     More, knowing that the relationship existing between the yield stress and the 
diameter of the grain has the following form [7,8]: 

2
1

y dc
−

ξ+=σ ,                     (19) 

yσ  increases when the diameter of the grain decreases and since the residual 
stress intensity increases with the increase of the elastic limit, one can say, 
considering the equation (16), that disparities observed between SDK  and SK  
values are mainly caused by the residual stresses.  
     One concludes that the computed stress intensity factor can be considered as a 
fatigue threshold taking into account the residual stresses. 

7 Conclusion 

In this work, we have presented a new method in the prediction of the inelastic 
cracked structures failure by the application of the shakedown analysis. This new 
method presents several advantages, among which, the facility of computation 
since one undertakes only an elastic calculation. Also, it allows going more far 
than the elastic limit in the structures design. We can also compute the fatigue 
threshold using this method. 
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