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Abstract 

In a previous study the three-dimensional rolling contact problem under Hertzian 
pressure has been dealt with. Two new initial guesses for the Newton-Raphson 
method were proposed, which always lead to convergent solutions for tangential 
stresses. However, non-Hertzian contact often appears in moderately used 
contact elements. The present study extends the previous study to cases with 
non-Hertzian contact. In particular the counter-formal case is treated. In this case 
the contact region can still be bounded by a plane, although the contact pressure 
is not Hertzian. The previous numerical algorithm is used to treat counter-formal 
contacts, and convergent results can always be obtained. 
Keywords:  rolling contact, rail and wheel contact, non-Hertzian contact, 
computational stress analysis. 

1 Introduction 

Rolling contact occurs in many mechanical pairs, such as gear and pinion, cam 
and follower, wheel and rail, and also in ball to ball contacts in bearings. Many 
analytical as well as numerical techniques have been suggested to solve for 
rolling contact stresses. Basically these techniques can be grouped into the 
following three categories: the integral equation method [1–5], the method based 
on variational principles [6,7], and the mixed method [8–10] that makes use of 
both of the two preceding methods. Among the various techniques based upon 
integral equations, the numerical procedure developed by Liu and Paul [5] may 
determine tangential contact stress distribution for elastically similar bodies in 
rolling contact. Their iterative procedure showed fast convergence for cases with 
small spins, but might fail to converge for cases with even moderate values of 
spin. In a previous study by Liu and Hsu [11], Liu and Paul’s numerical scheme 
was improved by using two new initial guesses, so that it might also converge 

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 46,
 www.witpress.com, ISSN 1743-355X (on-line) 

Computational Methods and Experimental Measurements XIII  569

doi:10.2495/CMEM070571



under very large spins. In Liu and Paul’s original study, both Hertzian and non-
Hertzian contacts were treated, but only cases with Hertzian contact pressure 
were presented by Liu and Hsu. The purpose of this study, therefore, is to extend 
this previous study to cases with non-Hertzian contacts. 
     The Hertzian pressure distribution was obtained under the following 
assumptions: 1. the contact region is very small so that it can be bounded in a 
plane; 2. in the vicinity of the contact region the two contacting bodies can be 
approximated by quadratic surfaces; and 3. the surfaces in contact are 
frictionless. While these are valid assumptions for new contacting surfaces, for 
moderately used contact elements, however, the above assumptions are generally 
not valid, and the corresponding contact pressures are non-Hertzian. In wheel 
and rail contact, although the pressure is non-Hertzian, but the contact region can 
still be confined on a plane [12]. In this study we assume that the loading is 
monotonically increasing, and that a fixed ratio of normal to tangential forces is 
maintained, so that only the final force values are considered. 
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Figure 1: (a) two bodies in rolling contact; (b) tangential forces on contact 
region Ω. 

2 Kinematic equation of rolling contact 

When two rolling bodies are pressed by a normal force N, the contact region Ω 
develops in the xy plane, as Fig. 1 shows.  In addition to the normal force N, 
tangential force (Fx, Fy) and twisting moment Mz are also transmitted in the 
contact region. If the two bodies in contact are elastically identical, namely, they 
have the same elastic properties, then the problem can be separated into two 
parts: the normal problem and the tangential problem [13]. In the normal 
problem, the contact region Ω and the pressure distribution p(x,y) in the region 
are determined. Tangential tractions Tx(x,y) and Ty(x,y) in the contact region are 
then determined in the tangential problem. This separation is valid for elastically 
identical materials because the tangential tractions imposed later on the contact 
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region do not affect the conformity of the two bodies in contact. Hence the 
normal pressure and the size of the contact region remain the same. In this study 
we assume the two bodies rolling over each other are elastically identical. The 
non-Hertzian contact region Ω and the pressure p(x,y) in Ω are given. The 
purpose is to determine the tangential tractions Tx(x,y) and Ty(x,y) in the contact 
region Ω. 
     When a braking moment M in the direction of −y is applied to body 1, a 
tangential force Fx develops in the contact region Ω to oppose the tendency of 
body 1 to slide over body 2. Likewise, a moment Mx along the x axis creates a 
tangential Fy in Ω. Figure 1(b) shows Fx and Fy in the contact region on body 2. 
As a result of Fx and Fy, certain points on the upper body (body 1) may slip over 
the contacting points on the lower body (body 2). The slippages sx and sy defined 
by 

02121 /)vv,vv(),( Vss yyxxyx −−=                                  (1) 
represent the velocities at a point (x ,y ) on body 1 relative to the point occupying 
the same position but on body 2. The normalization constant V0 is the rolling 
velocity when the two rolling bodies are rigid, that is, when they do not deform. 
The contact region hence reduces to a single contact point. In the case of gear 
and pinion pairs, rolling velocity V0 is the velocity of the contact point, and in the 
case of wheel-rail rolling contact, V0 is the velocity of the center of the rigid 
wheel. Johnson [1,2] derived the following kinematic equation for a state of 
steady rolling 
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+−+= φν                          (2) 

This equation shows that slippage (sx ,s y) may be separated into three terms. The 
first term includes two constants, the longitudinal creepage νx and the lateral 
creepage νy. They represent the change in rolling speeds due to the previous 
mentioned moments M and Mx.  Disregarding temporarily the tangential forces 
Fx and Fy developed in the contact region so that there becomes no resistance to 
M and Mx, then body 1’s rolling velocity deviates from its original value (V0 ,0). 
Note that equal but opposite moments −M and −Mx are applied to body 2 as well 
(not shown in Fig. 1), and a change in rolling speed of body 2 also occurs. Let 
(δVix ,δViy) represents the change in rolling velocity of body i (i=1 or 2) from the 
value (V0 ,0), then longitudinal and lateral creepages νx  and ν y are defined as 

02121 ),(),( VVVVVv yyxxyx δδδδν −−=                              (3) 
The second term of (sx ,s y) is due to the moment Mz applied to body 1, and also 
the equal but opposite moment −Mz applied to body 2 (not shown in Fig. 1). At 
the point of application of Mz on body 1, which we assume to be far away from 
the contact region, body 1 rotates about the z axis with an angular velocity ω1. 
Neglecting temporarily the resistant moment −Mz on body 1 so that body 1 can 
rotate freely, then the linear velocity at the point (x,y) in the contact region on 
body 1 is ω1(−y, x). The velocity of this point relative to the same point on body 
2 is then φ(−y, x), where the constant φ is called the relative spin, or simply the 
spin, defined by the equation 
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021 )( Vωωφ −=                                               (4) 
In obtaining the first two slip components, namely (νx ,ν y) and φ(−y, x), the 
resisting forces (Fx ,Fy)  and resisting moment Mz were not taken into account. 
The elastic deformation caused by these forces (moment) was neglected. Let ux 
and uy denote the elastic displacements produced by (Fx ,Fy,Mz) at a point (x ,y ) 
in the contact region on body 2. The relative slip velocity due to (ux ,u y) is given 
by the last term of equation (2). 

3 Discretization 

The elastic displacements (ux ,u y) in Eq. (2) are caused by the resisting forces Fx, 
Fy, and Mz, which are the resultants of tangential traction (Tx ,Ty) in the contact 
region. Using principle of superposition, one may express (ux ,u y) as follows 
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where fij(x ,y ,α ,β ) are Cerruti functions [14]. For example, fxy represents the 
displacement at the point (x ,y ), in the x direction, which is produced by a unit 
force at the point (α ,β ), in the y direction. 
     The contact region is first replaced by a number of horizontal strips, as Fig. 
2(a) shows, and each strip is further divided into several rectangular cells. Hence 
the contact region is discretized into n rectangular cells. The sub-region of Ω 
where relative slip occurs is called the slip zone, denoted by the symbol ΩS. The 
remaining region of Ω where relative slip is prohibited is called the stick zone (or 
locked zone), and we denote it by ΩL. Equation (2) is valid at each cell center, 
but instead of dealing with this equation directly, Liu and Paul [5], Hsu [15], and 
also Liu and Hsu [11] integrated Eq. (2) with respect to x to remove the partial 
derivative. Following the procedure suggested by Liu and Hsu, we integrate both 
sides of Eq. (2) from the center of the i'th cell (xi ,yi), to a point (xU ,y i), also 
making use of Eq. (5), obtaining 
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In the last equation (sxj ,s y j) and (Txj ,Ty j) are slippage and traction at the center of 
the j'th cell, whose width is ∆xj; functions hij are defined by  

( ) ( ) ( )βαβαβα ,,,,,,,,, iiijiUijiiij yxfyxfyxh −=                        (7) 
and Ωj denotes the rectangular region of the j'th cell, over which the double 
integral is evaluated. Tractions and slippages are taken out of the integrals since 
we assume they take constant values in a cell. The upper limit of integration 
(xU ,y i) depends upon position of the cell center (xi ,yi). Generally speaking 
(xU ,y i) is the closest boundary on the right of (xi ,y i). It can either be boundary 
that separates the slip-stick zone, or boundary of the contact region. For example, 
if (xi ,yi) is point A, point B, or point C in Fig. 2(b), then xU  is xS 1 , xS 2 , and xE , 
respectively.  
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Figure 2: (a) Discretized contact region; (b) integration limits. 

     Note that equation (6) can be written at each cell center (xi ,y i), with 
i=1,2,…,n, and for each cell center there are components in the x and in the y 
directions. Hence equation (6) implies 2n equations. In addition, when (xi ,yi) is 
in the slip zone, tangential tractions in this cell satisfy Coulomb’s law of friction, 
i.e. 

0)()()( 222 =−+ i
S

yi
S

xi pTT µ ,   for Sni ,...,2,1=                        (8) 
In the last equation the superscript S means the associated variable is for the slip 
zone, in particular, ),( S

yi
S

xi TT  is the traction of a cell i in the slip zone, and Sn  is 
the number of cells in the slip zone. The traction vector should be collinear with 
the slip vector, hence 

SS
xiyi

S
yixi niTsTs ,...,2,1      ,0 ==−                               (9) 

Note that the last equation only requires traction and slippage to be collinear. We 
also require that traction on the surface of body 2 is in exactly the same direction 
as the relative motion of body 1 to body 2, hence 0≥⋅ STs , or 

SS
yiyi

S
xixi niTsTs ,...,2,1      ,0 =≥+                             (10) 

Therefore we have 2n+2nS equations, given by Eqs. (6), (8), and (9), for the 
same number of unknowns, which are the 2n tractions (Txi ,Ty i) and the 2nS 
slippages (sxi ,sy i). 

4 Numerical procedure 

If there are nL cells in the stick zone ΩL, we may write Eq. (6) nL times, each time 
(xi ,yi) is replaced by a different cell center coordinate in ΩL, then we obtain 2nL 
equations as follows [11,15] 

 SL ΒtAte0 −−= ,  L
ii yx Ω∈),(                              (11) 

In the last equation tL and tS are traction vectors of lengths 2nL and 2nS, 
respectively, representing tractions in the stick and the slip zones; A and B are 
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coefficient matrices obtained by integrating Cerruti functions over cells in ΩL 
and in ΩS, respectively; e is the vector containing the constants of the first term 
on the right hand side of Eq. (6). Zero vector at the left hand side is due to the 
fact that no relative slip occurs in stick cells. Similarly we may write 2nS 
equations for cells in ΩS, as follows  

                 SL DtCtqs −−= ,  S
ii yx Ω∈),(                              (12) 

where s is the slippage vector of length 2nS. We may solve tL from Eq. (11) and 
then substitute it into Eq. (12), obtaining 

S11 tDBCAeCAqs )( −+−= −−                               (13) 

Thus the procedure is to solve for s and tS from equations (8), (9), and (13). After 
tS is obtained, then tL can be found from Eq. (11). Since equations (8) and (9) are 
nonlinear, the Newton-Raphson scheme is utilized by Liu and Paul [5], Hsu [15], 
and Liu and Hsu [11]. The initial guesses suggested by Liu and Hsu are given 
below 
Initial guess 1: 
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where (xp ,yp) is coordinate of a point called spin pole, whose location is to be 
estimated, and we will discuss this later. These initial guesses will be used in the 
subsequent analysis. 
     In addition to the equation-solving procedure discussed in the last paragraph, 
another iterative procedure is to determine the sizes of the stick and slip zones 
[5,11,15]. This procedure starts by assuming the whole contact region is the stick 
zone. Tractions of the first iteration tL can be obtained by solving Eq. (11), but 
without the last term. In subsequent iterations a slip zone generally appears, then 
tractions tS, tL, and slippage s are obtained using the previous mentioned 
equation-solving procedure. At the end of the an iteration, if traction at a cell in 
the stick zone equals to or exceeds its limiting value µp, then in the next iteration 
this cell is in the slip zone. Also, if inequality (10) is violated within any cell in 
the slip zone, then in the next iteration this cell is in the stick zone. The 
procedure terminates when all tractions in the stick zone fall below their limiting 
values, and inequality (10) is satisfied throughout the slip zone. 

5 Results and discussions 

In the following analysis the non-Hertzian contact region and the pressure on the 
region are taken from Paul and Hashemi [12]. By using initial guess 1, the 
Newton-Raphson procedure may always converge within 1%, provided that a  
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coarse mesh with less than 30 cells is used. In a case with very large spin, the 
stick zone may become very small, and a very fine mesh is necessary to expose 
this zone. In such a situation initial guess 1 may lead to divergence, and we can 
only turn to initial guess 2, which requires an estimation of the spin pole 
coordinate. We follow a two-stage analysis procedure suggested by Liu and Hsu 
[11] for Hertzian contact. In the first stage initial guess 1 with a coarse mesh is 
used, tractions so obtained may indicate the spin pole location. With this spin 
pole location, in the second analysis one may use initial guess 2 in a fine mesh. 
We found this procedure also work for non-Hertzian contact. 
     Figure 3 shows slip-stick boundaries for various values of normalized spin Φ, 
defined by Φ=Ea3φ /[µN(1−σ2) ], when the normalized longitudinal creepage 
Ea2ν x /[µN(1−σ2) ]=0.6; E is modulus of elasticity, σ is Poisson’s ratio, and a is 
the half length of the longest strip in the contact region, as shown in the figure. 
Figure 4 shows both the slip and stick zones under pure spin. One may notice 
that the stick zone may reduce to separated poles. In figure 5 we show the 
resultant force Fx and moment Mz due to longitudinal creepage ν x . All these 
results show that the initial guesses 1 and 2 may give convergent results under 
non-Hertzian contact. 
 

 

Figure 3: Slip-stick boundaries under various spin when 
)]1([ 22 σµ −NvEa x =0.6, Φ=Ea3φ /[µN(1−σ2) ]. 

6 Conclusions 

In this study it is shown that the numerical technique suggested by Liu and Hsu 
for Hertzian contact may be extended to cases with non-Hertzian contact. The 
two initial guesses suggested by them may be used together and convergence 
may always be obtained. For cases with large spins, initial guess 1 under a coarse 
mesh may provide spin pole locations, which are used in the analysis using 
initial guess 2, with a much finer mesh. 
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Figure 4: Slip and Stick zones under pure spin. 
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Figure 5: Tangential force Fx and twisting moment Mz due to longitudinal 
creepage νx. 
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