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Abstract 

By the progress of a computer, the elastic-plastic simulation becomes easier 
under the mathematical assumption. However, results of the numerical analysis 
of the elastic-plastic problem depend on the assumption of yield conditions, 
definition of yield points and approximation of the stress-strain diagram of the 
material and other factors. The best way to testify the precision is to compare the 
numerical results with the experimental ones. In this paper, the authors study a 
numerical simulation of the elastic-plastic problem under plane stress by the 
finite element method. Calculation is executed by using FEM software LUSAS. 
The plastic theory is based on the strain incremental one, and Prandtl-Reuss 
equations are used. As a yield condition, von Mises’ one is adopted. The 
definition of the yield stress is determined by the proportional limit. Three 
approximations of        stress-strain diagrams are selected. To verify the 
numerical results, an experiment is conducted under the same condition by the 
photoelastic coating method. However, it is not easy to evaluate the stress 
distributions from the isochromatic fringes. A numerical example of thin plate 
with a blunt slit subjected to uni-axial tension is presented.  Stress distributions 
in the minimum cross-section and stress contours are presented and examined. 
Keywords:  structural analysis, finite element method, elastic-plastic problem, 
stress concentration. 
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1 Introduction 

Machines and structures are usually composed of various kinds of metals. Stress 
concentration due to the existence of cracks or notches in metals causes fracture 
or failure of the structures. Therefore, it is important to investigate the elastic-
plastic behavior of metals. The finite element method is one of the most effective 
tools to deal with the numerical simulation of elastic-plastic problem. 
     Various mathematical methods in the theory of plasticity have been proposed 
by many researchers [1–3]. Also, Ellyin and Wu analyzed the stationary crack 
simulation under the cyclic loading containing the effect by the over- loading 
cycle using their constitutive equations [4]. 
     In this paper, simulation of elastic-plastic problem is studied. To evaluate the 
validity of the numerical simulation of the elastic-plastic problem by the finite 
element method, it is desirable to compare the result with an experimental one by 
the photoelastic coating method (PCM) under the same dimensions and 
conditions [5,6]. Important factors in the elastic-plastic calculation are the 
definition of the yield points and the assumption of stress-strain curves [7]. For 
example, simple prediction of a stress-strain diagram is an approximation with 
two bi-linear lines, taking the work-hardening ratio constant value during the 
plastic deformation. There are several ways of the definition of yield points. 
Numerical simulations are conducted for three cases subjected to the tensile load. 
The software called LUSAS is used for the numerical calculation so as to 
consider the convenience and visualization [8]. The incremental step-by-step 
calculation is adopted in the convergent process of Newton-Raphson method. 
Numerical example is presented for a rectangular thin plate with a blunt slit 
subjected to uni-axial tensile load. Stresses and strains in the minimum cross-
section and contour lines are shown. The contour lines called quasi-isochromatic 
fringes by the finite element model are compared with isochromatic ones 
obtained by the PCM experiment. And the reinforcing effect of the PCM is also 
simulated by using three-dimensional solid elements. 

2 Elastic-plastic theory 

2.1 Yield function 

Considering the second and the third invariants of the deviatoric stress tensor 
'
2J and '

3J , the yield condition f for the isotropic materials is written as the next 
equation. 
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Where those two invariants can be expressed using the tensor notation as, 
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Assuming that the third invariants '
3J does not affect the yielding behavior, the 

von Mises yield condition is adopted and it is given as, 
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Under the plane stress, the yield surface is depicted with an elliptical form. 

2.2 Constitutive equations  

The relations between stress and strain increments under the plane stress are 
written as 
     In the elastic region 
 

                 { } [ ]{ }εσ eDd =                                                 (4) 
where 

                        { } { }Txyyxd τσσσ =                                          (5) 
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In the plastic region 
 

{ } [ ]{ }εσ pDd =                                                 (8) 
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where, E, ν , 'H and '
iσ  are Young’s modulus, Poisson’s ratio, work-hardening 

ratio and deviatoric stresses, respectively. 
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3 Finite element calculation 

3.1 Configuration 

Numerical example of a thin plate with a blunt slit under the plane stress has 
been calculated by the finite element method.  Originally, the shape of the model 
is the same as the specimen conducted by the photoelastic coating method. The 
material used for the PCM experiment is made of aluminum alloy (A5052PH34) 
and the mechanical properties are shown in Table 1. Yield surfaces under the 
plane stress are depicted in Fig.1. The shape of the specimen and its dimensions 
are shown in Fig. 2. Without taking into account the geometrical symmetric 
condition, whole specimen is divided into the finite element model as shown in 
Fig. 3 using auto-mesh function. The total number of elements is 16176, and that 
of nodal points is 14680. 

Table 1:  Mechanical properties and yield stress. 

 

Figure 1: von Mises and Tresca yield surfaces. 

3.2 Yield points and stress-strain diagram 

There are many definitions of yield points. We used two kinds of definitions. 
One is the proportional limit and the other is the intersection between two 
straight lines. In the elastic-plastic calculation, there are some approximate ways 
to predict the stress-strain diagram. One of the simplest ways is to approximate 
with bi-linear lines. The precise prediction of the stress-strain diagram is to use 
multi-linear lines to express the gradual change of work-hardening ratio H’. In 
the calculation of the plastic region, we deal with three cases. In the Case 1, the 
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yield point is the proportional limit and work-hardening ratio is taken as a 
constant. In the Case 2, the yield point is defined with intersection of the two 
extrapolated   lines and H’ is constant.  In the Case 3, stress-strain curve is 
approximated with twelve straight lines. Stress-strain diagrams for three cases 
are shown in Fig. 4.  
 

Figure 2: Rectangular specimen with a blunt slit. 

 
 

16176 elements, 14680 nodes 

Figure 3: Finite element model. 
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Figure 4: Stress-strain diagrams of the aluminum alloy. 

4 Numerical results 

 The stress component yσ of the tensile direction in the minimum cross-section 

for the Case 1 is presented in Fig. 5 for several loading steps. Similarly, yσ for 
the Case 2 is shown in Fig. 6. In the Cases 1 and 2, as the work-hardening   ratios 
H’ are assumed to be constant, the maximum stresses near the tip of the slit are 
constant too.  
 

Figure 5: yσ in the x-axis (Case 1). Figure 6: yσ in the x-axis (Case 2). 
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Figure 7: Quasi-isochromatic fringe 
by FEM (Py=11760 N). 

Figure 8: Isochromatic fringe by 
PCM (Py=11760 N). 

 
 
     The difference of definition of the yield points makes significant difference in 
the magnitude of stress distribution. In the case 3, the increase of the change of 

yσ  in the plastic range is evident. From this fact, the numerical calculation had 
conducted using the stress-strain diagram of the case 3. 
 
 

 

Figure 9: Equivalent stress σ  without coating in case of Py=8829Ｎ (Von 
Mises). 
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Figure 10: Equivalent stress σ  with coating in case of Py=8829Ｎ (Von 

Mises). 

     In the calculation with LUSAS, the von Mises yield criterion is adopted. 
Therefore, we can easily obtain the contour lines of equivalent stress. To 
compare the results by PCM experiment, Tresca’s quasi-isochromatic lines that 
are proportional to the difference of two principal stresses are calculated and 
shown in Fig. 7 for the case of Py=11760 N. The isochromatic fringes conducted 
by the PCM experiment are presented in Fig. 8 for the same loading step. The 
tendency of these results is roughly similar to each other, though quantitative 
analysis is not adequate yet due to the limitation of the maximum number of 
color values of the software. Thus, without complicated calculation of stress and 
strains of PCM experimental procedure, the validity of the results by the finite 
element can be assured by the comparison of these two Figs. 7 and 8.  
     It is known that if the stiffness of the polymer coating which is adhered on the 
surface of the specimen in the PCM is larger compared with the surface metal, 
the reinforcing effect is not negligible. We have calculated the reinforcing effect 
with three-dimensional solid elements taking account of the stiffness in the 
thickness direction of the aluminum plate and polymer. The contour lines of 
equivalent stress σ  without coating in case of Py=8829 N are shown in Fig. 9. 
Similarly, contour lines of σ with coating are shown in Fig.10. However, from 
these figures, the comparison of the quantities of the equivalent stress is not clear 
because of the difference of the color scale. By plotting the equivalent stress in 
the minimum cross-section, the reinforcing effect is calculated as 6 percent. 

5 Conclusion   

In this paper, the finite element simulation has been conducted for the thin plate 
with a blunt slit subjected to uni-axial tension. Three cases had been calculated 
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with different definition of yield points and the approximation of stress-strain 
diagrams in the proportional tensile load. The stress distribution in the minimum 
cross-section and stress contour lines are obtained. 
 

(1) The definition of yield point affects the magnitude of the distribution of 
stress state in plastic range greatly. The best approximation of stress-
strain diagram is to use the proportional limit as the yield point and 
multi-linear work-hardening ratios of case 3. 

(2) The evolution of elastic-plastic boundaries is roughly similar to those 
obtained by the photoelastic coating experiment. However, quantitative 
analysis is not adequate in the present method. 

(3) The reinforcing effect of the polymer of the PCM experiment is 
simulated by three dimensional solid elements. It is found that the 
reinforced effect is about 6 percent which coincide with theoretical 
value. 
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