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Abstract 

In some previous papers of the author coupled numerical–experimental modeling 
of tunnels embedded in surrounding rock was based on minimization of a certain 
functional describing the steepest descend mode of differences of measured and 
computed values of stresses or displacements at selected points. The idea 
consisted of a choice of subdomains (patches), the eigenstrains in which were 
introduced using the unit impulse technique. Influence matrices were generated 
and the linear hull of eigenstrain effects together with the optimization problem 
lead to the identification of plastic stresses inside the domain describing the 
surrounding rock. Consequently, a nonlinear model in numerical analysis can be 
improved using eigenparameters as design parameters in optimization. The only 
problem remaining is how to select the patches. In this paper inverse variational 
principles are applied to help solve this principal problem. The 2D problem is 
solved with moving patches (support subdomains) with uniformly introduced 
eigenstrains. 
Keywords: coupled modeling, tunnel face stability, Inverse variational 
principles, Desai’s model. 

1 Introduction  

Using a very powerful tool, a combination of Transformation field analysis 
(TFA) and a certain plasticity rule (possibly softening included), back analysis of 
structures can be regarded as seeking the optimal distribution of eigenparameters 
(eigenstrains or eigenstresses) in the domain describing undeformed rock in a 
certain sense. For the first time the TFA was applied to optimization of 
prestressing of composite structures, [1]. The eigenparameters can represent 
many phenomena (not only prestress), and also the influence of plastic 
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deformation, or the influence of the length of purchase in tunneling. A similar 
approach was applied to nonlinear problems in composite structures, [2]. In the 
first above mentioned publication the areas with possible eigenparameters were 
firmly given. In the second publication the areas (patches) were selected from 
experience and also were done.  
     Unit impulses of subdomain-wise uniformly distributed eigenparameters 
(generally linear or higher order polynomials) enable one to find material 
properties from comparison of results from experimental studies and numerical 
analysis at selected points, as was done in other papers of the author of this paper 
on geomechanical problems, [3, 4], for example. The only problem still 
occurring is: find the optimal distribution of patches (subregions), where 
eigenstrains are introduced or considered. This is a problem of combined 
optimization, where the principal variables depend on subdomains (patches), the 
uniform distribution (this is one of possible approximations) of eigenparameters 
is assumed. This problem is not easy to solve, as the optimization of principal 
variables must be iterated, and a reasonable tool for it should be found. One such 
tool can serve Inverse variational principles, which hold the volume of the 
domain as constant, and design variables are subdomains, or their 
representatives, [5].  

2 Transformation field analysis 

In this section the general procedure for coupled modeling on the firm patches is 
briefly introduced using the TFA. It may be done in terms of many modern 
numerical methods. First, let us consider that the body Ω under consideration 
(part of a structure, element, and system of more elements, composite, in our 
case rock surrounding tunnel) behaves linearly, i.e. Hooke’s linear law is valid in 
the entire body. When the problem is correctly posed, the displacement vector, 
strain and stress tensors can be obtained from the Navier equations, kinematical 
equations, and linear Hooke’s law. 
     In the second step we select points, where the measured values are available, 
either from experiments in laboratory, or from “in situ” measurements. We also 
select points Ar, or disjoint regions (subdomains) Ωr, r = 1,...,n, from the body 
under study, and apply there successively unit eigenparameter impulses (either 
eigenstresses or eigenstrains) to get an influence tensors (matrices). Moreover, 
let the set of points where the measured values are known be Bs, s = 1,...,m. Then 
the real stress s)(σ at Bs is a linear hull of stress s)( extσ at Bs due to external 

loading and eigenstrains r)(µ  and r)( plε , or eigenstress r)(λ  and relaxation 

stress r)( relσ at Ar (similar relations are valid for overall strain field ε  or 
displacements u): 
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where the Einstein summation rule has been used and the influence tensors P, Q, 
and also R and T may be identical, as any eigenparameter may stand for the 
plastic or relaxation parameter (say, eigenstrain may stand for plastic strain, 
which is obvious from (1) and (2)). The strain and stress components are written 
in vector form. Note that µλ L−=  holds, where L is the elastic stiffness tensor.  
     The first relations in (1) and (2) describe the initial strain method while the 
second relations in those equations formulate the initial stress method.  
     On the other hand measured stresses (σi

meas)s, or measured displacements 
(umeas

i)s  are available in a discrete set of points. A natural requirement is 
formulated in terms of steepest descent type “error functionals” I, which express 
that the values of measured and computed values be as close as possible:  
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where the sum is taken over i and s. Differentiating I by (µα)β  yields a linear 
system of equations for (µj)l: 
 

(Aαk)
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r = Yα
β,  α = 1,...,6, β = 1,...,m,                         (5)  
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in the case (3), and  
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in the case (4). Recall that the patches are selected as fixed, their position and 
shape are firmly given.  

3 Nonlinear law given                            

The previous section was devoted to application of the TFA to coupled modeling 
assuming the starting (initial) stage of computation is linear elastic. This case is 
appropriate for large scale problems, involving plasticity, hereditary problems 
and some softening rules. On the other hand, probably a more precise approach 
would be to start with the plastic law, at least approximately.  
     It is well known that some cases of softening lead to multivalued functions. 
The procedure described in the previous section cannot include this case. If the 
initial stage is described by a certain plastic rule, the larger scale of materially 
nonlinear problems can be solved in similar way as before. Let us concentrate on 
such problems.  
     If a certain plasticity law is proposed we can write using the splitting of 
elastic and plastic influences the resulting stresses and displacements as: 
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    From the above equations it immediately follows that, for example, 
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holds, i.e. the influence of elasticity and plasticity is hidden in the first terms of 
the right hand sides of (8). From (8) two possibilities obviously appear: Either 
plastic effects disappear in the first terms of the r.h.s. of (8) or they are 
considered there. Certain starting plastic rules involved in (8) are discussed in 
[4]. 
     Using the expressions (8) and the minimum conditions (3) or (4), the 
conditions for a minimum are obtained from (5) with 
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The left hand sides hold their former expression.  

4 Inverse variational principles 

Following extended primary variational principles one can write the energy 
functionals on the whole domain Ω as:  
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where a(.,.) is an energetic norm and [.,.] is the scalar product on the boundary Γ  
of Ω, with p being prescribed tractions. Let us divide Ω into m disjoint 
subregions  (patches) Ωr, union of them is Ω. Then (9) can be rewritten as 
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where ar(.,.) is an energetic norm on each Ωr. Then the problem appears not to be 
properly defined. In order to ensure that the problem is correctly posed, the 
volumes (or areas in 2D) have to be bounded and their measure has to be given. 
The functional (9) then is improved as:   
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where Cr is a measure of Ωr, see [5], and rω are the lagrangian multipliers. The 
internal energy is a sum of integrals over appropriate domains rΩ of 

potentials rW )( , which in our case reads as: 
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where r
i )(µ  has been considered uniformly distributed in each rΩ . Hence, 

Euler’s equations follow as: 
1. Variation by displacements yields equilibrium equations involving partially 
uniformly distributed eigenstrains r

i )(µ . They are given from (5) for a supposed 
distribution (shape) of rΩ . 
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2. Approximating the problem in the sense of FEM with K, say, then the changes 
in the fields with respect to the subdomains can formally be written as: 
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where rp  are internal parameters declaring the shape of the subdomain rΩ . 
From (10) it immediately follows that the lagrangian multipliers have to be 
constant for each r, i.e. on each subdomain rΩ all components of eigenstrain 
tensor remain uniform.  
3. Partial differentiation of (8) by rω ensures that the measures of the subdomains 
are unchanged. Some recommendations on how to introduce the internal shape 
parameters could be found in [5], for example.  

5 Numerical procedure for two subdomains 

To show the ability of the above submitted procedure consider a simply 
supported steel fiber reinforced concrete beam with the length of 30 cm, the 
height of 12 cm, the bending stiffness I  = 1440 cm4, E = 2 GPa. The width is 10 
cm. The problem is solved as a stretched plate, the shape of the external 
boundary of which remains constant and one patch is considered. Concentrated 
forces are applied at one third and two thirds of the span, i.e. four points test is 
studied. The symmetric case is solved, shear eigenstrains are neglected, and 
transversal eigenstrain disappears, too. The force F applied is 4 kN, distributed 
along the width, so that the stress in the elastic state is 1.67 MPa.  
     Measured values of deflections are as follows: under the force at the lower 
edge of the beam it was 0.69 cm, at the middle of the span 0.828 cm. The initial 
stage is considered elastic, plasticity occurs due to eigenparameters, which stand 
here for plastic strains.  
     For the optimized shape of the patch we use condition (4). Note that the 
number of unknown eigenparameters cannot exceed the number of measured 
values. This must be understood in such a way that one component of the 
eigenparameter tensor is one unknown. For example, if we take into 
consideration a full 2D tensor, than four components create the unknowns in one 
patch. Consequently, for one patch we need at least five measured values of 
either displacement, or stresses, or both, as obviously the conditions (3) and (4) 
can be combined.  
     The strain at the middle of the span in the lower edge was calculated as 
0.000835, while the resulting strain dropped to the value of 0.000738, i.e. the 
eigenstrain lowered the strain by approximately 0.0001. The movement of the 
boundary of the optimal patch undergoes criteria, which are described in the 
second example, which is more general. 
     The final situation is described in Fig. 1, where the shape of the uniformly 
distributed eigenstrains is shown (we consider only one component of the 
eigenstrain tensor, namely the horizontal eigenstrain, according to our above 
mentioned assumption).  
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Figure 1: Four point test on a beam with one patch. 

     The second example is much more complicated and shows us how to use the 
procedure in underground structure assessment, namely for description of 
behavior of the rock surrounding the tunnel lining. Also here, one patch is 
considered for simplicity. As in the eigenparameters also the influence of 
purchase can be involved, the problem of loading of the lining is solved as a 2D 
problem.  
      

               
 

a)                                                                b) 

Figure 2: a) Starting triangular mesh and b) highlighted domain describes the 
patch considered.  

     The height of the domain, in which the problem is solved, is 30 m, the 
diameter of the tunnel is 10 m, the distance of the axis of the tunnel from the 
lower boundary of the domain is 15 m, and the width of the model is 15 m. A 
triangular mesh is depicted in Fig. 2a), and the starting shape of the patch is 
displayed in Fig. 2b). In these pictures as well as in the next pictures no tunnel 
lining is depicted in order not to disturb the contour lines (hypsography).  
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     The problem starts with the solution of the plastic stage obeying the 
generalized Mohr-Coulomb hypothesis with the following material parameters: 
 

Modulus of elasticity E = 1000 MPa 
Plastic E  =  800 MPa 
Residual E  =  500 MPa 
Poisson’s ratio ν  =  0.25 
Plastic equals residual ν  =  0.46 
Shear strength C  = 0.08 MPa 
Plastic C  = 0.06 MPa 
Residual C  = 0.02 MPa 
tan ϕ  = 240 
Plastic tan ϕ  = 300 

Residual tan ϕ  = 100 

Volume weight ρ  = 2100 kg/m3 

 
where ϕ  is the angle of internal friction.  
     Using the above said parameters describing material properties, which 
correspond with the class R3 of the rock according to geological standards. The 
tunnel lining is made from concrete and no plastic behavior is assumed. After 
computing the plastic state with the above parameters, the initial stage is created 
and the eigenstrains can be introduced. The initial shape of the patch is depicted 
by the highlighted subdomain in Fig. 2b). In this figure also possible movement 
of one nodal point is illustrated by thick lines. Parameters pi are distances of the 
patch boundary nodal points from the center of the tunnel in our case. Movement 
of each point causes also a change in the mesh, as is obvious from Fig. 2b).  
     The measured values were also vertical deflections on the contact of the 
lining and rock. The values were taken from a scale model built up in stands, as 
described in [3], for example. There were nine measurement points along the 
lining; the values at symmetric points were averaged.   
     In Fig. 3a) hypsography of vertical stresses in the starting plastic stage is 
depicted and in Fig. 3b) hypsography of vertical stresses in the final stage after 
optimization of the shape of patch is displayed. The difference between these 
two pictures is not as distinct as supposed, the plastic law and the material 
properties were selected in a good way, and the influence of the purchase is not 
too important. From this assertion immediately follows the conclusion that the 
eigenstrains can be also considered as a measure of error of the plastic law 
selected. On the other hand, if the choice of the plastic law is wrong, the initial 
stage starts with elasticity, for instance, as was the case of the previous example, 
more accurate results can be expected only if more patches are selected, not only 
one, as in our examples.  
     In Fig. 4a), vertical displacements, which were compared with the 
measurements on the scale model, are again drawn in the form of hypsography. 
Important is the fact that at one of the measured points, at point A, the measured 
vertical displacement was 4.12 cm, so that the results are very versatile. For 
completeness in Fig. 4b) the shape of the patch in the final stage is also shown.   
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a)                                                          b) 

Figure 3: Vertical stresses in a) plastic stage and b) after optimization. 

                     
 

a)                                                                         b) 

Figure 4: a) final displacements and b) shape of the optimal patch. 

6 Conclusions 

In some previous papers of the author it has been shown that the coupled 
numerical and experimental (scale) modeling or the on site measurements can 
basically improve identification of a numerical mechanical model. The only 
problem appeared the choice of subdomains (patches). No solution has been 
proposed so far. This paper tries to improve this lack of information using 
Inverse variational principles. Although simple examples are presented here, the 
generalization to more patches is straightforward.  
     It is worth noting that for subdomains of large extent an extensive number of 
measurements are necessary. In former papers three or at most four subregions 
have been considered in applications to underground structures, particularly for 
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assessment of tunnel face stability. The reason consists of the fact that (5) is 
generally created for 3 in 2D or 6 in 3D components of eigenstrains (or 
eigenstresses), which means it is necessary to determine at least 24 unknown 
eigenparameters in 3D for four subdomains in each iterative step. From the point 
of view of numerical analysis this does not cause any problem, but to feed (5) at 
least by 25 measurements the original domainΩ can lead to quite a complicated 
problem or an insufficient set of data.   
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