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Abstract 

The criticality type eigenvalues of the one-speed transport equation in a 
homogeneous slab with anisotropic scattering and Marshak boundary conditions 
have been studied. The scattering function is assumed to be a combination of 
linearly anisotropic and strongly forward-backward scattering. When the forward 
and backward scattering completely dominate over the ‘ordinary’ scattering, or 
the thickness of the slab approaches zero, the highly peaked angular flux at the 
central point of the slab was expressed by finite width delta functions. Using the 
finite width delta functions to analyse the high-order truncation error of the 
angular flux we could accurately obtain results with a low-order approximation. 
Numerical results for critical eigenvalues are obtained and tabulated for different 
scattering parameters including the extreme cases, while the standard spherical 
harmonics method gets a singularity.  
Keywords:  spherical harmonics method, anisotropic scattering, finite width 
delta functions. 

1 Introduction 

Criticality type eigenvalues are needed for a variety of applications in reactor 
physics. The problem of anisotropy and its effects on the size of the system is 
one of the most important problems of transport theory. Many methods for 
computing transport equations have been proposed, such as the spherical 
harmonics ( NP ) method [1,2] and the discrete ordinates ( NS ) method [3, 4, 5]. 
When the forward and backward scattering completely dominate over the 
‘ordinary’ scattering (the extreme case) or the thickness of the slab approaches to 
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zero, the angular distribution is very strongly peaked along the direction parallel 
to the slab surface, one has to take high-order functions into account for the 
highly peaked angular flux. The standard NP method is thus inadequate for this 
type of problem [1, 6]. D. C. Sahni has solved the problem by combining the NS  
method, integral equation method and eigenvalue method [6]. To the best 
knowledge of the present author there is currently no article on completely 
calculating various combinations of the scattering parameters including the 
extreme case. 

This work is to propose an easy-to-use comprehensive modified spherical 
harmonics method for computing transport equations in this situation. We have 
derived the asymptotic solution of transport equations and expressed the angular 
flux at the central point of the slab by finite width delta functions. Using the 
finite width delta functions to analyse the high-order truncation error of the 
angular flux we could accurately obtain results with low-order approximation. In 
this article we introduce our opinion in physics at first, then discuss the 
computational method, at last give results on several typical models and compare 
our results with the results calculated by the integral equation method. 

2 Transport equation 

With conventional notation [6], the starting linear transport equation for neutrons 
of one speed can be written as 

  ( , ) ( , ) ( , ) ( ' ) '.t tr r c r f dψ ψ ψΩ⋅∇ Ω +Σ Ω = Σ Ω Ω ⋅Ω Ω∫                  (1) 

     The scattering kernel is assumed to be of the form 

1
1( ' ) (1 3 ' ) ( ' 1) ( ' 1)

4 2 2
f bα β α βδ δ

π π π
− −

Ω ⋅Ω = + Ω ⋅Ω + Ω ⋅Ω − + Ω ⋅Ω +        (2) 

here 0 , 1, 1α β α β≤ ≤ + ≤ ，and 1| | 1/ 3b ≤ . In the present investigation we 
apply the theory to a source free, symmetric homogeneous infinite slab of 
thickness 2a . When this scattering function is inserted into eqn (1) we obtain the 
transport equation  

1

11

( , ) (1 ) ( , )

                 (1 ) (1 3 ') ( , ') ' ( , ).
2

x c x
x

c b x d c x

ψ µµ α ψ µ

α β µµ ψ µ µ β ψ µ
−

∂
+ −

∂
= − − + + −∫

      (3) 

Here x is the spatial variable measure in mean-free path, µ is the direction cosine 
of the angle between the positive x axis and the neutrons velocity vectorΩ . The 
boundary conditions are that no neutrons enter the slab from the outside, i.e. 

( , ) 0 0;
( , ) 0 0.
a

a
ψ µ µ
ψ µ µ

= <
 − = >

                                          (4) 

When 1, ,bα β and c  are specified we can solve critical thickness 2a .          
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3 Asymptotic analytic method and integral method  

Following Inonu [7], we divide the ordinary part of the scattering function into 
one symmetric and one antisymmetric part. We make the substitutions [6] 

1( , ) ( , ) ( , )cx x x
c

α γκ µ ψ µ ψ µ
β

− −
= − −                               (5) 

where 
(1 )

1 ( )
cc

c
α β
α β

− −
=

− +
�                                                   (6) 

2 2 2(1 ) .c cγ α β= − −                                              (7) 
Obviously, for γ to be real it is required that ( ) 1cα β+ ≤ . 
     With these substitutions we find that ( , )xκ µ is a solution of the equation 

1

11

( , ) ( , ) (1 3 ') ( , ') '
2

x cx b x d
x

κ µ γµ κ µ µµ κ µ µ
−

∂
+ = +

∂ ∫
� �                   (8) 

where 

1 1
1 .
1

c cb b
c c

α β
α β

− −
=

− +
�                                             (9) 

The boundary conditions for the transformed flux ( , )xκ µ will then be 
( , ) ( , )     0;
( , ) ( , ) 0.
a R a

a R a
κ µ κ µ µ
κ µ κ µ µ

= − <
 − = − − >

                                (10) 

where 

.
1

cR
c
β
α γ

=
− +

                                              (11) 

Eliminating ( , )ψ τ µ− from eqn (5) with arguments µ and µ− we obtain 
1( , ) ( , ) ( , ).

2 2
c cx x xα γ βψ µ κ µ κ µ
γ γ

− +
= + −                          (12) 

1 1

1 1

1( , ) ( , ) .
2

c cx d x dα β γψ µ µ κ µ µ
γ− −

− + +
=∫ ∫                        (13) 

Utilizing the symmetry of the angular flux at 0x =  (0, ) (0, )ψ µ ψ µ= −  we 
obtain 

1(0, ) (0, ).
2

c cα β γψ µ κ µ
γ

− + +
=                               (14) 

From eqns (13) and (14) we know the zero moments of the angular flux 
1

0 1
( ) ( , )x x dψ ψ µ µ

−
= ∫ , 

1

0 1
( ) ( , )x x dκ κ µ µ

−
= ∫ as a function of x  have a similar 

distribution and (0, )ψ µ , (0, )κ µ as a function of µ  have a similar distribution.  
If we assume that 1 0b = and  

  0 ( ) cos( / ).x xκ η=                                              (15) 
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     When eqn (15) is inserted into eqn (8) we obtain 
2
| | | |

2
2 | |

| |( ) ( 1) cos( ) ( 1)( )sin( )
(0, ) .

2
[1 ( ) ][ ]

a a

a

a ae R R R e
ck

e R

γ γ
µ µ

γ
µ

µ
η γη η

µ
µ
γη

 
− + − + + 

 =

+ −

�
        (16) 

 
(a) For 0β =  from eqn (11) it follows that 0R =   

/| | /| |

2

1 cos( / ) sin( / )(0, )
2 1 ( / )

a ac a e a ek
γ µ γ µη ηµ
µ γη

− −− +
=

+

�
                     (17) 

When 1/ cα →  and / 0a η →  if we assume the scale flux as a function of 
x is a constant we obtain 

/(0, ) (1 ).
2

ack e γ µµ −= −
�

                                          (18) 

0 1(0) 1 ( )ac e a E aγκ γ γ γ− = − + �                                     (19) 

where 1( )E x is exponential integral function. Neglecting terms proportional 
to γ and of higher order 

0[1 log( )] 1c a aγ γ γ− −� �                                           (20) 

0(1 ){1 log[(1 ) ]} 1ca c aα γ α− − − − �                                (21) 
where 0γ  is Euler’s constant 0 0.577216γ = .  
 
(b) For 0β ≠  when 1/ cα β+ →  from eqn (11) it follows 01, ( ) 0R aκ= − = ,  
we obtain cos( / ) 0a η ≈ and sin( / ) 1a η ≈  

2

1(0, ) .
2 1 ( / )
ck µ

µ γη
=

+

�
                                         (22) 

0 (0) (1/ ).k c arctgγη γη= �                                      (23) 
     To get η we use Eqs. (15) and (23) 

(1/ ) 1.c arctgγη γη =�                                         (24) 
This is close to the discrete eigenvalues of the Case spectrum [8].  

It shows that the expression 2 (1 )(1 ) /ca c cα β α β γ− − − +  approaches a 
constant when 1/ cα β+ → . The limiting value is 2 (1.954 in reference [6]). 

2 (1 )(1 ) / 2.0.ca c cα β α β γ− − − + =                                 (25) 
 
(c) As shown by Siewert and Williams [9] and Sahni et al [6] eqn (8) can be 
transformed into an integral equation for the zero moments of the angular flux 

0 ( )xκ . If we assume that 1 0b = and 0 ( )xκ is an even function of x it will read 
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0 0 1 0

1

0

( ) ( ) ( | |) ( )
2 2

2 ( ) ( )exp( ){exp[ ] exp[ ]}
.

[1 exp( 2 / )]

a a

a a

c cx y E x y dy y dy

a y x y x d

R a

γ γκ κ γ κ

γ γ γ µ
µ µ µ

µ γ µ

− −
= − +

− − +
+

×
− −

∫ ∫

∫

� �

                (26)  

For 0β =  with a constant scale flux assumption eqn (26) will be 

0 1(0) ( | |) .
2

a

a

c E y dyγκ γ
−

= ∫
�

                                         (27) 

Expand 1( )E x at 0x = and neglecting terms proportional to γ and of higher order, 
we could obtain eqs. (20) and (21).  

4 Spherical harmonics method 

For the Spherical harmonics method solution, the angular flux is expanded in a 
series of Legendre polynomials as  

( ) ( ) ( )
0

2 1, .
2

N

n n
n

nx x Pψ µ µ
=

+ = Φ 
 

∑                                 (28) 

This expansion (28) can now be substituted into eqn (3) in order to obtain the 
function ( )n xΦ . Multiplying both sides of the resulting equation by ( )mP µ , 
integrating overt and utilizing the orthogonally properties and the recursion 
relations of the Legendre polynomials, after some rearrangement we have: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1

0 0 1 1 1

1 2 1

  2 1 [ 1 1

      1 ]           0,1, 2, .

n n
n

n n

n
n n

d x d x
n n n x

dx dx
n c x b c x

c x c x n N

α β δ α β δ

α β

− +Φ Φ
+ + + + Φ

= + − − Φ − − Φ

+ Φ + − Φ = …

        (29) 

One may employ the well-known procedure of seeking a solution of the 
homogeneous eqn (29) in the form  

( ) ( ) ( )expn nx G v x vΦ = −                                    (30) 

where the ( )nG v  are some constants. Each of the ( )n xΦ  defined in eqn (30) will 
satisfy eqn (29) provided that the characteristic NP  equations are satisfied：  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1

0 1 1

1 2 1 {1 1

1 } 0.

n n

n
n n n

n G v nG v n v c

b c G v

α β

δ δ α β

+ −+ + − + − − −

 × + − + − = 
                 (31) 

Eqn (31) has a homogeneous matrix form:  

( ) 0.v =  M G                                               (32) 
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The coefficient matrix is ( 1) ( 1)N N+ × + , and 0 1 [ ,   . . . ]T
nG G G=G . The 

unknown constant vector G is determined from the normalization 1( ) 0G ν− =  and 

0 ( ) 1G ν = . The general solutions of eqn (3) with N odd can be expressed, for 
0,1,n N= " , as  

( ) ( ) ( ) ( ) ( )
( )1 2

1
1

N
n

n n j j n j j n j
j

x G v A F x v B F x v
+

=

 Φ = − + − ∑                (33) 

where ( ) ( 1) ( )n
n nG v G v− = − , ( / ) exp( / )n j jF x v x v± = ± and jA and jB are 

coefficients to be determined from the boundary and symmetry conditions of the 
problem. The essential idea of the standard NP  method is that 1( ) 0N v+Φ = , i.e. 
the permissible eigenvalue jν is the jth positive zero of 1( )NG v+ . The 
determination of the roots is obtained using the Newton-Raphson iterative 
technique.  

For a finite slab of half-thickness a we apply the Marshak boundary condition  

( ) ( ) ( )
1

2 10
, 0 1, 2, 1 2kP a d k Nµ ψ µ µ− − = = +∫ …                 (34) 

to the general solution (31), and then obtain an eigenvalue equation which relates 
the critical dimensions a to the parameter c , or vice versa. This can be written in 
matrix form as  

( ) [ ]0a =  M A                                              (35) 

where A is a vector with elements kA , ( )1,2, 1 2k N= +… and the ( ) 2[ 1 2]N +  
elements of matrix , ( )k j aM are given by  

( ) ( ) ( ) ( )
( )

( ) ( )
1 2

, 2 2 1
0

, cosh sinh
N

k j n j j k j j
n

a n k G v a v G v a vϕ
−

−
=

= +∑M      (36) 

where  

( ) ( )( ) ( ) ( )
( )( ) ( ) 22 2 1

4 1 1 2 1 ! 2 !
, .

2 2 2 1 ! 1 !

n k

k n

n k n
n k

n k k n n k
ϕ

+

+ −

+ − −
=

− + + −  
                  (37) 

Clearly eqn (37) is a linear system of algebraic equations. This system has a 
non-trivial solution (for kA ) if determinant , ( )k j aM  vanishes, and this condition 
yields the desired results.  

5 Modified spherical harmonics method 

The NP approximation ( N odd) consists of truncating the expansion (28) after 
1N +  terms, i.e. at n N= . One also chooses a finite number of points of the 

ν spectrum, given by the roots of the eqn (31) and 1( ) 0NG v+ = . Since 1c > , the 
root 1ν is imaginary (we let 1 iν η= ) and very close to the discrete eigenvalue 

0ν of the Case spectrum [8]. The eigenfunction corresponding imaginary 
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eigenvalue 1ν  is dominant part of the angular flux whenα β+ approaches the 
value1/ c .  

It is necessary to count for the high-order terms of eqn (28) as the angular 
flux is a very strongly peaked function along the direction parallel to the slab 
surface. The modified spherical harmonics ( NPδ ) method is that using the finite 
width delta functions analyse the high-order truncation error of the angular flux 
and the high-order part of the angular flux is calculated analytically.  

1( ) 1n nG D for n even and n Nν = ∈ ≥ +                              (38) 
where 

1

1
( ) ( ) .n nD P dδ µ µ µ

−
= ∫                                             (39) 

     From the previous section we know the finite width delta functions ( )δ µ are 
expressed by eqns (18) and (22) for 0β =  and 0β ≠  separately.  

/| |

1

2

1 1            0;
2 1 ( )

( )
1 1   0.

2 (1/ ) 1 ( / )

a

a

e if
e a E a

if
arctg

γ µ

γ β
γ γ

δ µ
β

γη γη µ γη

−

−

 −
= − += 

 ≠ +

                       (40) 

The value of 1 1( )NG ν+ is not equal to zero at this time  

1 1 1( ) .N NG Dν+ +=                                                    (41) 
To apply the Marshak boundary condition (34) we must take into account the 

high-order parts of angular flux so eqn (36) for 1j =  will be changed to  

( ) ( ) ( )
( )

( )

( ) ( ) ( )

1 2

,1 2 1 2
0 1 2

2 1 1

, ( ) , ( )

               cos sin .

N

k n n
n n N

k

M a n k G v n k D

a G v a

ϕ ϕ η

η η

− ∞

= = +

−

 
= +  
 
× +

∑ ∑
              (42) 

( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( )

1 2
1

,1 2 1 2 2 10
0

2 1 1

, ( ) ( )

               cos sin .

N

k n n k
n

k

M a n k G v D P d

a G v a

ϕ η µ δ µ µ

η η

−

−
=

−

 
= − +  
 
× +

∑ ∫        (43) 

6 Numerical results and discussion 

In order to examine the validity and accuracy of the present method two 
computer programs ( NPδ and integrate method) in FORTRAN were written to 
calculate the critical thickness. We took the results from integral equation 
method as reference values.  

The integral eqn (26) was solved iteratively by substituting improved flux 
approximation in to the right-hand side of the equation. When 1/ cα β+ → the 
angular flux ( , )xκ µ are high-order functions of µ  for 0β ≠ we use 24N =  to 
520 double-Gauss quadrature sets for different combinations ,α β and c .  
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Table 1:  The critical slab thickness 2a obtained in NP , NPδ approximation 
and integrate ( Int ) method with different value of , ,c α β and 
degree of linearly anisotropic scattering comparison with results of 
C. Yildiz [1]. 

 
For the specified , ,cα β and 1b  we first computed the eigenvalue 1 iν η=  

from eqn (24) and start the calculation with some assumed value of half-
thickness a , then we could calculate 1( )nD ν by eqn (39). Except 1 1( )NG ν+  

, ,c α β  b1 11P  3Pδ  11Pδ  Int *
11 13[1]P P  

-0.3 2.95114 2.95434 2.93843  2.95115 
0 3.11594 3.14486 3.10476 3.08555 3.11595 1.2 

0.70, 0.0 
0.3 3.32199 3.34232 3.31169  3.32199 
-0.3 2.60780 0.86736 0.87132  2.60780 

0 2.66236 0.87926 0.87928 0.89557 2.66236 1.2 
0.8333, 0.0 0.3 -- -- --  2.72127 

-0.3 0.52586 0.31261 0.31780  0.52586 
0.0 0.53742 0.32049 0.32095 0.32932 0.53742 2.0 

0.49, 0.0 0.3 -- -- --  0.54996 
-0.3 0.52156 0.17348 0.17428  0.52156 
0.0 0.53247 0.17586 0.17587 0.17913 0.53247 2.0  

0.4999, 0.0 0.3 -- -- --  0.54425 
-0.3 1.14702 0.97472 1.02865  1.14702 

0 1.15204 0.98166 1.03315 1.01267 1.15204 1.2 
0.0, 0.80 

0.3 1.15715 0.98875 1.03772  1.15715 
-0.3 0.95199 0.00987 0.01707  0.95199 

0 0.95384 0.00987 0.01707 0.04210 0.95384 1.2 
0.0, 0.8333 0.3 0.95569 0.00988 0.01708  0.95569 

-0.3 0.33843 0.08039 0.11128  0.33843 
0.0 0.34093 0.08114 0.11188 0.14402 0.34093 2.0 

0.0, 0.49 0.3 0.34349 0.08191 0.11250  0.34349 
-0.3 0.33164 0.00204 0.00378  0.33164 
0.0 0.33389 0.00204 0.00378 0.01852 0.33389 2.0  

0.0, 0.4999 0.3 0.33618 0.00204 0.00378  0.33618 
-0.3 0.67499 0.16057 0.22206  0.66691* 

0 0.67993 0.16207 0.22326 0.28622 0.67168* 1.5 
0.33, 0.33 0.3 0.68501 0.16360 0.22449  0.67658* 

-0.3 0.73696 0.45872 0.55192  0,73009* 
0 0.74475 0.46617 0.55693 0.56570 0.73770* 1.5 

0.33, 0.3 0.3 0.75285 0.47388 0.56202  0.74562* 
-0.3 0.93023 0.79248 0.88245  0.92990* 

0 0.95138 0.81434 0.90186 0.88135 0.95144* 1.5 
0.42, 0.15 0.3 0.97453 0.83624 0.92250  0.97506* 
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and ( ),1kM a  the calculation procedures in present work are the same as standard 

NP method. After we obtain an improved value of half-thickness a  and continue 
this process until we get a convergence accurate result.   

In table 1, we present the critical slab thickness 2a obtained in NP  method, 

NPδ method and integrate ( Int ) method with different value of , ,c α β and 
degree of linearly anisotropic scattering 1b . In reference [1] Yildiz had compared 
the results calculated by standard NP  method with the results of Sahni et al [6] and 
others. The conclusion was that the standard NP  method could give reasonable 
results for thick slab.  We directly compare our results obtained by standard NP  
method with those in reference [1].  The agreement is generally within five or six 
significant decimal places for 13N < . For 13,15N =  the agreement is generally 
within three or four significant decimal places. We couldn’t obtain converged 
results for some combination of ,α β  when 1/ cα β+ → with 1 0.3b = .  

When 1γ ≈  the value of 1NG + is nearly zero. The low-order NP approximations 
generally give accurate results for thick slabs [1,2]. For example when 0.7,α =  

10.0, 1.2, 0.0c bβ = = = , 0.16γ =  and 12 0.0066G = the NP , NPδ methods give 
closely results.  

When the valuesα β+ approach the limit value 1/ c  the angular distribution is 
very strongly peaked along the plane of the slab. The critical slab thickness 2a  
varies rapidly with c  and approaches to zero but the standard NP method give an 
unchanged result. For example while for 0.0, 0.4999,α β= =  12.0, 0.0c b= = ,  

0.02γ = , 1 0.2252NG + =  the critical slab thickness 2a  are 0.33389 for 11P . The 

NPδ  method gives 0.0 782 03a = for 11Pδ . Even 3Pδ approximation could give a 
reasonable result 0.0 042 02a = . In table 1 we could see when 0.8333α = , 

0.0β = , 1.2c = , 1 0.0b = , 54 10γ −= × , 1 0.164NG + =  the critical slab thickness 
2a  are 2.6623,0.87928 for 11P , 11Pδ  respectively.   

It is seen from Table 1 that the NPδ method has more accuracy than standard 

NP  method but has less accuracy than integral equation method.  When 1/ cα β+ →  
the critical slab thickness 2a  as a function of ,α β approaches to zero more 
rapidly than real. We think that the errors occur in the lack of taking account of 
the high-order moments of the angular flux in the boundary condition eqn (34).   

7 Conclusion 

In this paper we have considered the slab criticality problem of the linear 
transport equation with forward, backward and linearly anisotropic scattering in 
a homogeneous slab. Using the asymptotic analytic method we obtain the 
asymptotic angular flux which expressed by finite width delta functions at the 
central point of the slab when α β+  approaches the value1/ c . Using the finite 
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width delta functions to consider more terms in the expansion of angular flux we 
could obtain accurately results with low-order N and less computational effort. 
The present scheme converges quite well and enables us to obtain accurate 
results even with the low-order formulas.  

The present method is applicable to large system, and also to very small 
system. The slab thickness as a function of ,α β  are continuously and smoothly 
for variousα β+ ranging from 0 to the extreme case1/ c . The present method 
can also be extended to more general problems with two or three dimension 
high-order anisotropy and to multiregional energy dependent problems. We have 
started looking into these aspects and the conclusion awaits further work. 
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