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Abstract

This study presents a numerical method for solving the two-dimensional unsteady
problem of laminar free convection from a heated tube in an otherwise quiescent
fluid. The governing Navier–Stokes and energy equations are formulated in terms
of the streamfunction and vorticity. The numerical scheme is designed to handle a
large range of Grashof numbers and to capture the physical behaviour inherent in
the initial flow. To numerically solve the governing equations a spectral finite-
difference method is proposed. The temperature and vorticity are advanced in
time using an implicit scheme of Crank-Nicholson type. The streamfunction,
on the other hand, is expanded in a truncated Fourier series. To determine the
surface vorticity exact integral conditions are derived and incorporated into the
numerical method. The numerical results have been verified against derived
analytical solutions which are valid for small times and large Grashof numbers.
The numerical and analytical results are found to be in good agreement.
Keywords: unsteady, laminar, viscous, incompressible, Boussinesq, spectral finite-
difference scheme.

1 Introduction

Free convection from a horizontal two-dimensional body is a fundamental thermal-
fluid problem. It has received numerous numerical, experimental and theoretical
studies over the years. This paper deals with the unsteady behaviour of laminar,
two-dimensional flow caused by free convection from a heated elliptic cylinder
emitting a constant surface heat flux into the surrounding fluid which is initially at
rest. This problem is of interest for both theoretical and practical reasons since it
has important applications in engineering such as heat transfer from heated tubes,
hot wire anemometry, thermal pollution and even in the design of heat exchangers.
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The present work differs from previous studies (summarized in [1]) in several
respects. First, the majority of the previous studies have focussed on circular
cylinders which is much simpler. Second, a new numerical approach based on
a different scaling of the equations is proposed. Third, an approximate analytical
solution is provided and used to validate the numerical solution for small times
and large Grashof numbers.

2 Governing equations

The equations governing the motion of a viscous incompressible fluid are the
Navier–Stokes and energy equations. The fluid is characterized by properties
which include: ν the kinematic viscosity, κ the thermal diffusivity, α the thermal
expansion coefficient, and k the thermal conductivity. While these fluid properties
are assumed to be constant, the fluid density, ρ, is allowed to vary with temperature,
T , in the usual fashion

ρ(T ) = ρ0[1 − α(T − T0)] ,

where ρ0 refers to a reference density and T0 a reference temperature. The flow
setup is illustrated in Figure 1. To render the equations in dimensionless form the
chosen length scale is the semi-focal length of the ellipse, c =

√
a2 − b2, the

time scale is c/U where U is the velocity scale (soon to be specified) and the
temperature scale ∆T is related to the surface heat flux, Q, through ∆T = cQ/k.
The velocity scale is taken to be U = (αg∆Tc)1/2 where g is the acceleration due
to gravity.

Since the flow is assumed to remain two-dimensional it is beneficial to work
in terms of a streamfunction and vorticity. Also, because of the geometry of
the problem it is worthwhile to work with the modified polar coordinates (ξ, θ)
which are related to the Cartesian coordinates (x, y) through the conformal
transformation

x+ iy = cosh[(ξ + ξ0) + iθ] .

The advantage of this is that the contour of the cylinder is transformed to ξ = 0
while the infinite region exterior to the cylinder is mapped to the semi-infinite
rectangular strip 0 < ξ <∞ , −π ≤ θ ≤ π. The constant ξ0 is defined by

tanh ξ0 = r

where r = b/a is the ellipse aspect ratio equal to the ratio of the semi-minor to
semi-major axis lengths. The above mapping holds for all elliptic cylinders having
0 < r < 1 with r = 0 denoting a flat plate and r = 1 a circular cylinder. Another
important feature associated with this transformation is that length scales close to
the cylinder remain unchanged while those far away get contracted. This is helpful
from a numerical point of view since the flow field is compressed.
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Figure 1: The flow setup.

In terms of the coordinates (ξ, θ) the dimensionless unsteady Navier–Stokes and
energy equations for a viscous, incompressible fluid in terms of the streamfunction,
ψ, vorticity, ζ, and temperature, φ, then become

∂2ψ

∂ξ2
+
∂2ψ

∂θ2
= M2ζ , (1)

∂ζ

∂t
=

1
M2

[
∂ψ

∂θ

∂ζ

∂ξ
− ∂ψ

∂ξ

∂ζ

∂θ
+

1√
Gr

(
∂2ζ

∂ξ2
+
∂2ζ

∂θ2

)
+A

∂φ

∂ξ
− B

∂φ

∂θ

]
, (2)

∂φ

∂t
=

1
M2

[
∂ψ

∂θ

∂φ

∂ξ
− ∂ψ

∂ξ

∂φ

∂θ
+

1√
GrPr

(
∂2φ

∂ξ2
+
∂2φ

∂θ2

)]
, (3)

where

M2 =
1
2
[cosh(2(ξ + ξ0)) − cos(2θ)] ,

A = sinh(ξ + ξ0) cos(η) cos(θ) − cosh(ξ + ξ0) sin(η) sin(θ) ,

B = cosh(ξ + ξ0) cos(η) sin(θ) + sinh(ξ + ξ0) sin(η) cos(θ) .

The problem as posed is completely specified by the following dimensionless
parameters: the Grashof number, Gr = αgc3∆T/ν2, the inclination, η, the
Prandtl number, Pr = ν/κ, and the ellipse parameter, r. The dimensionless
temperature, φ, is related to the dimensional temperature, T , through φ = (T −
T0)/∆T . Similarly, ψ = ψ̃/(cU) and ζ = cζ̃/U with the tilde denoting a
dimensional quantity. Lastly, in arriving at the above equations we have made
the Boussinesq approximation to describe the buoyancy force and have omitted
viscous dissipation.

We assume that at t = 0 an impulsive heat flux is applied to the cylinder surface
and that both the cylinder surface and surrounding fluid have an initial temperature
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of T0. Equations (1)-(3) are to be solved subject to the no-slip and constant flux
conditions on the surface given by

ψ =
∂ψ

∂ξ
= 0 and

1
M

∂φ

∂ξ
= −1 on ξ = 0 .

Inspecting these conditions we observe that two conditions for the streamfunction
are given while none for the vorticity is provided. Later we will discuss a method
to prescribe the surface vorticity. In [2], the vorticity field is shown to satisfy
integral constraints. These can be derived from the no-slip boundary conditions
using Green’s second identity and are given by:∫ ∞

0

∫ π

−π

e−nξM2ζ sin(nθ)dθdξ = 0 , n = 1, 2, · · · ,
∫ ∞

0

∫ π

−π

e−nξM2ζ cos(nθ)dθdξ = 0 , n = 0, 1, · · · .

At large distances we impose

ψ, ζ, φ→ 0 as ξ → ∞ ,

which correspond to a quiescent far-field flow. Lastly, we need to specify initial
conditions. Since the fluid initially has a uniform temperature and the motion starts
from rest, the initial conditions are simply

ψ(ξ, θ, t = 0) = ζ(ξ, θ, t = 0) = φ(ξ, θ, t = 0) = 0 .

To better resolve the early stages of the flow following the impulsive startup at
t = 0, the boundary-layer coordinate, z, defined by

ξ = λz , λ =

√
4t√
Gr

, (4)

is used. Essentially, this change of variable stretches the thermal-boundary layer.
In terms of the coordinate z equations (1)-(3) get transformed to

∂2ψ

∂z2
+ λ2 ∂

2ψ

∂θ2
= λ2M2ζ , (5)

1
M2

∂2ζ

∂z2
+ 2z

∂ζ

∂z
= 4t

∂ζ

∂t
− λ2

M2

∂2ζ

∂θ2

+
4t
λM2

(
∂ψ

∂z

∂ζ

∂θ
− ∂ψ

∂θ

∂ζ

∂z

)
− 4tA
λM2

∂φ

∂z
+

4tB
M2

∂φ

∂θ
, (6)

1
PrM2

∂2φ

∂z2
+2z

∂φ

∂z
= 4t

∂φ

∂t
− λ2

PrM2

∂2φ

∂θ2
+

4t
λM2

(
∂ψ

∂z

∂φ

∂θ
− ∂ψ

∂θ

∂φ

∂z

)
. (7)

As a final note we emphasize that although the boundary-layer coordinate z is
utilized, the fully nonlinear Navier–Stokes and energy equations are to be solved
and not the simplified boundary-layer equations.
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3 Numerical solution procedure

As previously mentioned the early stages of the flow are to be computed using
equations (5)-(7) involving the boundary-layer coordinate z. Once the boundary
layer thickens appreciably one can switch back to the original coordinate ξ and
solve equations (1)-(3). However, for largeGr it is more practical to work entirely
in the boundary-layer coordinate z. In the numerical scheme outlined below only
the procedure for solving equations (5)-(7) will be discussed for the sake of brevity.
The procedure for solving (1)-(3) will be very similar.

We begin by discretizing the computational domain bounded by 0 ≤ z ≤ z∞
and −π ≤ θ ≤ π into a uniform network of K × L grid points located at

zi = ihz , i = 0, 1, . . . ,K where hz =
z∞
K

and θj = −π + jhθ , j = 0, 1, . . . , L where hθ =
2π
L
,

with z∞ denoting the outer boundary approximating infinity.
The streamfunction is solved by expanding it into a truncated Fourier series

ψ(z, θ, t) =
1
2
F0(z, t) +

N∑
n=1

[Fn(z, t) cos(nθ) + fn(z, t) sin(nθ)] .

where the Fourier coefficients satisfy

∂2Fn

∂z2
− n2λ2Fn = λ2sn(z, t) , n = 0, 1, · · · (8)

∂2fn

∂z2
− n2λ2fn = λ2rn(z, t); , n = 1, · · · (9)

with

sn(z, t) =
1
π

∫ π

−π

M2ζ cos(nθ)dθ ,

rn(z, t) =
1
π

∫ π

−π

M2ζ sin(nθ)dθ .

Boundary conditions for the Fourier components can easily be determined from
those for the streamfunction. Further conditions satisfied by the functions rn(z, t)
and sn(z, t) follow from the integral conditions and are given by∫ ∞

0

e−nλzsn(z, t)dz = 0 , n = 0, 1, 2, · · ·
∫ ∞

0

e−nλzrn(z, t)dz = 0 , n = 1, 2, · · · .

The above play an important role in determining the surface vorticity.
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Equations (8)-(9) at a fixed time are of the form

h
′′
(z) − β2h(z) = g(z) ,

where β = nλ and the prime refers to differentiation with respect to z. These
ordinary differential equations can be integrated using step-by-step formulae. The
important point to note here is that the particular marching algorithm to be used
is dependent on the parameter β. Two sets of step-by-step methods were utilized:
one for β < 0.5 while another one for β ≥ 0.5. The specific schemes used can be
found in [3].

To discuss the numerical method used to solve equations (6)-(7) we begin by
rewriting them in the generic form

t
∂χ

∂t
= q(z, θ, t) .

The scheme used to discretize this equation is very similar to the Crank-Nicholson
implicit procedure. Assuming the solution at time t is known, we advance the
solution to time t+ ∆t by integrating the above. Integration by parts yields

χτ |t+∆t
t −

∫ t+∆t

t

χdτ =
∫ t+∆t

t

qdτ

where ∆t is the time increment. Approximating the integrals using the trapezoidal
rule results in the expression

χ(z, θ, t+ ∆t) = χ(z, θ, t) + (
∆t

2t+ ∆t
)[q(z, θ, t+ ∆t) + q(z, θ, t)] .

Since q(z, θ, t + ∆t) depends on χ(z, θ, t + ∆t) and its spacial derivatives
the scheme is implicit. This equation is solved iteratively using a Gauss–Seidel
procedure. All spatial derivatives appearing in the function q are approximated
using central-differences; thus the scheme given is second order accurate in both
space and time.

The boundary conditions used in solving the energy equation are straight-
forward and require no explanation. For the vorticity transport equation, on the
other hand, careful attention must be given to determine the surface vorticity. The
surface vorticity can be determined by inverting the expressions for rn and sn and
leads to the truncated Fourier series

ζ(0, θ, t) =
1
M2

0

{1
2
s0(0, t) +

N∑
n=1

[rn(0, t) sin(nθ) + sn(0, t) cos(nθ)]} ,

where M2
0 = M2(z = 0, θ). The quantities sn(0, t) and rn(0, t) are computed

by enforcing the integral conditions; that is, off the cylinder surface rn and sn can
be computed using the most recent guess for ζ. Then, sn(0, t) and rn(0, t) are
computed by numerically satisfying the integral constraints.
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We summarize the numerical method by listing the steps involved in the
procedure. Assuming all quantities are known at time t and wish to advance the
solution to a time t+ ∆t, we perform the following steps (p denotes the iteration
counter ):
1. solve for φ(p)(z, θ, t+ ∆t),
2. solve for ζ(p)(z, θ, t+ ∆t) everywhere except on the cylinder surface (z = 0),

3. compute r(p)
n (z, t+ ∆t), s(p)

n (z, t+ ∆t) for z �= 0,

4. calculate r(p)
n (0, t + ∆t), s(p)

n (0, t + ∆t) by enforcing the integral conditions
and hence compute ζ(p)(0, θ, t+ ∆t),
5. solve for f (p)

n (z, t+ ∆t), F (p)
n (z, t+ ∆t) and thus obtain ψ(p)(z, θ, t+ ∆t),

6. repeat above steps till convergence is reached and increment p by 1 after each
complete iteration.
Step (4) indicates how the integral conditions are used in determining the surface
vorticity. It may also be necessary to subject the surface vorticity to under-
relaxation in order to obtain convergence. Convergence is reached when the
difference between two successive iterates of the surface vorticity falls below some
specified tolerance ε.

4 Results and discussion

After performing numerous numerical experiments, the following computational
parameters were chosen: N = 25, ε = 10−6, z∞ = 10. A typical grid size used
was K × L = 200 × 120. Because of the impulsive start, small time steps of
∆t = 10−3 were used initially. As time increased the time step was gradually
increased to ∆t = 0.05. Results were obtained for parameter values of r = 0.5,
η = 45◦, Pr = 0.7 (corresponding to air) with Gr = 102 and Gr = 104.

Shown in Figures 2(a), (b) are isotherm plots at times t = 2.5, 100, respectively,
for the case Gr = 102. In all isotherm plots to be presented the outermost contour
corresponds to φ = 0.05 and the spacing between consecutive contours was set
to ∆φ = 0.05. For this case computations were carried out in the boundary-layer
coordinate up to t = 2.5 and then switched back to the original coordinate. At
t = 2.5 the parameter λ = 1 and thus is a convenient time to switch coordinates.
The isotherms portrayed in Figure 2(a) appear to form concentric rings. For small
times this is to expected as this corresponds to the conduction regime. For large
times, as depicted in Figure 2(b), a well developed thermal plume forms.

Next we present some results for the case Gr = 104. For this large Grashof
number computations were carried out entirely in the boundary-layer coordinate.
Displayed in Figure 3 is an isotherm plot at t = 20. Witnessed in this diagram is
the formation of a well defined plume. It is interesting to note that for large Gr the
plume develops much earlier in time due to the enhanced buoyancy force.

Surface temperature and vorticity distributions are plotted in Figures 4, 5,
respectively, at various times for the case Gr = 104. As time advances both
distributions reveal a prominent maximum evolving.
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Figure 2: (a) Isotherms at t = 2.5 for Gr = 102, (b) isotherms at t = 100 for
Gr = 102.

The numerical scheme was verified against a derived analytical solution which
is valid for small t and large Gr. If Gr is large and t is small, then λ is also small,
and it is possible to expand the flow variables in a double series in terms of λ and
t. First, each flow variable χ is expanded in a series of the form

χ = χ0 + λχ1 + λ2χ2 + · · · .

Then each χn, n = 0, 1, 2, · · · , is further expanded in a series of the form

χn(z, θ, t) = χn0(z, θ) + tχn1(z, θ) + · · · .
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Figure 3: Isotherms at t = 20 for Gr = 104.
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Figure 4: Surface temperature distributions at various times for Gr = 104.

Following this procedure, the leading-order term in the solution for the temperature
can be shown to be

φ(z, θ, t) ∼ 2
√
t√

πPr
√
Gr

(e−PrM2
0 z2 −

√
πPrM0zerfc(

√
PrM0z)) , (10)

where erfc(x) = 1 − 2√
π

∫ x

0

e−w2
dw .
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Figure 5: Surface vorticity distributions at various times for Gr = 104.
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Figure 6: Comparison between analytical and numerical solutions for Gr = 104.

Contrasted in Figure 6 are the analytical and numerical solutions for Gr = 104.
As expected, for small t the two solutions are in good agreement and as time
progresses the agreement worsens.
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5 Concluding remarks

Discussed in this paper is a numerical procedure to solve the problem
of impulsively generated free convection from a heated tube. Although the
details were only presented for the case of an elliptic cylinder, other cylinder
cross sections can easily be handled by simply changing the metric, M2, in
equations (1)-(3). A numerical technique involving both finite difference and
spectral methods was described and was successful in computing the unsteady
flow for a large range of Grashof numbers.

Future work involves continuing the analytical solution procedure and
determining more terms in the expansion. In addition, it is desirable to make
connections with the recent experimental results of Elsayed et al. [4] to
demonstrate that the proposed numerical method can realistically mimic the
physical problem in the laminar regime.
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