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Abstract 

We explore novel ideas to improve the accuracy of the integral approximation of 
differential operators (Gradient and Laplacian) in the simulation of thermal 
viscous problems with Lagrangian Blob mesh-less methods. 
     Basically we investigate and develop a novel convolution integral 
discretization of the differential operators by using 2D-Taylor series expansions 
and a Gaussian like kernel function defined on a compact support around the 
blob centre of a given particle. 
     This allows us to overtake: 
• deficiency of cells in the compact domain due to irregular distribution of the 

particles around the given blob, 
• deficiency of cells in the compact domain caused by the presence of a 

boundary cutting the support of a nearby blob. 
The accuracy and order of approximation of such a discretization are determined 
in regular and randomly distorted grids of various sizes, and compared with the 
widely used PSE (Particle Strength Exchange) formulation. 
     Results obtained in the solution of thermal buoyant problems at realistic 
values of the Grashoff number demonstrate validity and benefits of the novel 
findings.  
Keywords:  integral definition of differential operators, lagrangian mesh-less 
methods, vortex/thermal blobs, thermal buoyant problems. 
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1 Introduction 

Mesh-less methods (both 2 and 3 D) are of growing interest in the simulation of 
viscous unsteady fluid-dynamic problems.  In particular, we focus on the analysis 
of the particle based Lagrangian approach to the Helmholtz formulation of the 
complete Navier-Stokes equations.  Such analysis is made using individual 
discrete particles, blobs, that, as computational elements, transport (with the 
velocity induced by the vorticity field) momentum/vorticity and energy. 
     In the regularized vortex blob method, the discretization of the equations is 
made by considering N-blobs problems where vorticity/energy is represented, for 
a general particle located in (x, t), by convolution integrals with kernel radial 
functions, W(r), r = |x|, satisfying given normalization properties.  
     The accuracy of the solution depends on the approximation of the differential 
operators of the equations.  Usually diffusive Laplacian operators are discretized 
according to the Particle Strength Exchange (PSE) method proposed by Degond 
and Mas-Gallic [1] and Gradient operators (needed in the buoyant term and in 
the 3D vorticity equation stretching term) according to a similar method 
proposed by Eldredge et al [2].  Both such discretizations are defined by 
convolution integrals with kernel radial functions derived according to the 
specific kernel function, W(r), used. 
     The discretization of each term is substituted in the equations and integrated 
over the volume around each blob particle: this will result in a time integration of 
N-body problem. 
     The discretization of the differential operators is quite accurate for blobs 
regularly distributed in the field and away from boundaries/discontinuities. 
Usually, to avoid inaccuracy due to distorted particle field, a regrid is used, after 
a number of integration steps, to project the field on a regular mesh. 
     The interest of the authors lay in the modeling of Unsteady Free Convection 
Buoyant Flows (Helmholtz formulation) characterized by strong unsteady start 
up phenomena (usually mushroom rising domes) and by a timely growing 
convective field that requires vanishing asymptotic boundary conditions 
(pressure closure). 
     Since regrid of the actual blob field on a regular symmetric grid will result in 
a somewhat viscous step, the authors are willing to search for formulations of the 
differential operators that are accurate also for distorted blob fields. 

2 Taylor convolution formulation 

We consider a function f(x) = f(x,y), on a 2D field, represented by blobs located 
on a non regular grid and we are looking to compute the values of Gradient and 
Laplacian of the field at a given blob located at xo = (xo,yo) by a convolution 
integral strategy on a compact domain around the blob, by using a kernel 
function W(x-x o, h). 
     Following an idea developed by Liu and Lui [3], we consider a Taylor 
expansion of f(x,y) around the given point (xo,yo) truncated at the 3rd order: 

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 46,
 www.witpress.com, ISSN 1743-355X (on-line) 

256  Computational Methods and Experimental Measurements XIII



2 21 1
o o x y xx xy yy2 2o oo o o

f (x, y) f (x , y ) x f y f x f x y f y f ...= + ∆ + ∆ + ∆ + ∆ ∆ + ∆ +  (1) 

where: ∆x = x - xo, ∆y = y - yo. 
     We consider a kernel function W(x-xo,h) that is compact on a domain Ω of 
radius k times the grid size, h, around xo. The kernel vanish on the boundary of 
Ω and has unitary zero-order moment, whereas all other n-th order moments are 
zero:  
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Moreover we assume that the first partial derivatives of the kernel, Wx(x-xo, h) 
and Wy(x-xo, h), vanish on the boundary and have unitary first-order moments 
whereas all others vanish: 
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Finally we assume also that all second partial derivatives of the kernel, Wxx(x-xo, 
h), Wxy(x-xo, h) and Wyy(x-xo, h) vanish on the boundary and have unitary 
second-order moments whereas all others vanish: 
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Since we are looking for a convolution representation of operators, we 
multiply eq. (1), truncated to 2nd order, alternatively, by the two first partial 
derivatives of the kernel function W(x-xo, h) and integrate on the compact 
domain.  

We obtain then a system of two linear equations: 

[ ]

[ ]
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∫ ∫ ∫
        (5) 

where: f = f(x), f o = f( x o ). 
The solution of eq. (5) furnishes the representation of the components of the 

field gradient, fx fy, at xo. 
Similarly by multiplying alternatively eq. (1) by the three second partial 

derivatives of the kernel function W(x-xo, h), by truncating the expansion to the 
3rd order and by integrating on the compact domain Ω, we can obtain the 
representation of the second derivatives needed for the Laplacian (fxx , fyy) by 
solving the system of 3 linear equations: 
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(6) 

It is worthy to note that in case of symmetrical grid, many of the convolution 
integrals will vanish, and a much simple representations will result: 
for the Gradient: 
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for the Laplacian: 
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In the following we shall denote the representations given by eqs. (5) and (6) as 
“TCFC” and the representations given by eqs. (7) and (8) as “TCFP”. 

3 Kernel function 

The kernel used is a modified (2D) Gaussian: 

( )2 2

2 2

4 x y4 1W(x, y,h) exp
h h

 +
 = −
 π  

        (9) 

It can be shown that such kernel, with its derivatives, satisfy the Moment 
closures as per eqs. (2)–(4). The kernel of eq. (9) is compact on r/h ≤ 2 with an 
approximation of 1.5E-7; its first derivatives are compact with an approximation 
of 1.5E-6, the second derivatives are compact with an approximation of 1.5E-5. 

4 Strategy of the performance analysis 

We assume a given known field on a regular or perturbed grid over a region and 
we proceed to compute the values of Gradient and Laplacian on a number of 
collocation points. Thereafter, we do compare the values computed with various 
methods with the exact ones and determine the statistics of the errors. 
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     Among others used, we report the analysis for the field:  

 f(x,y) = cos(2πx) sin(2πy) / (2π)  (x,y)∈[0,1]x[0,1]       (10) 

that represents the pressure field of a well known test case for benchmarking of 
Navier Stokes equations [4].  
 

 
Figure 1. 

 

Figure 2. 
 
     We note that this field implies homogeneous Neumann conditions on the 
boundaries x=0 and x=1, and homogeneous Dirichlet conditions on the 
boundaries y=0 and y=1. 
     The reference grid is regular or perturbed according to the value of a random 
parameter Nrandom. For Nrandom=0 the reference grid is symmetric. 
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     The grid of the collocation points, where we are computing the values of the 
Gradient and Laplacian, is located in the mid points of the original regular grid. 
     For various grid size and values of Nrandom, we will compare the 
performances of the methods: TCFC, TCFP, and PSE, in terms of: 

• Field survey comparison maps, 

• Map of the error in the field.  

• Global RMS error, 

For each formulation, the trend of the Global RMS error in terms of the grid size, 
h, will give the real value of the order of approximation of the methods. 

4.1 Field survey comparison maps 

We show the Laplacian maps obtained with TCFC, TCFP, PSE, compared to the 
exact one for the case: Nx*Ny =21·21, h=0.05, Nrandom=0 in Figure 3.  
     We note that all the three methods catch the general behavior of the Laplacian 
field, but the PSE lacks for magnitude, and the TCFP locally suffers the Dirichlet 
boundary conditions on y=0 and y=1. 
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Figure 3. 
 

     The same case, obtained with a strongly distorted grid denoted by 
Nrandom=0.5, results in the maps in Figure 4. 
     It can be seen that TCFC is still able to give quantitative and qualitative 
satisfactory results, it suffers only the intersection zones with change of sign. 
     For the other two maps, TCFP is clearly failing and PSE is clearly 
unsatisfactory. 
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Figure 4. 

4.2 Field maps of the error 

For conciseness we report solely the error maps for TCFC and PSE 
corresponding to the case Nx*Ny =41*11, h=0.025, Nrandom=0.25 in Figure 5.  
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Figure 5. 
 
     These maps confirm what said in the previous paragraph. It is clear the much 
better accuracy of the TCFC. 

4.3 Error versus grid size 

We consider the error on the RMS norm of Gradient and Laplacian with varying 
grid size and distortion of the grid. Since we realize that such norms are affected 
by strong local errors nearby boundaries, we report the norm for the 
computations of the operators in collocation points within one grid size step 
away from the boundaries, that we call Inner grid.  
     We consider firstly the Gradient of the three methods. 
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Figure 6. 
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Figure 7. 
 

     The trends clearly show that TCFC and TCFP are almost equivalent, of 2nd 
order, and practically not sensible to grid distortion. 
     PSE is almost zero order. TCFC and clearly inadequate. 
     A comparison for the Laplacian shows that TCFC and TCFP are equivalent 
for symmetrical grid and 2nd order. For distorted grid TCFC maintains roughly 
the 2nd order accuracy, whereas TCFP and PSE are not well performing. 
     In conclusion, the TCFC perform much better of the other formulations both 
for Laplacian and for Gradients, and it is second order. 

5 Buoyant problem test 

We are going to compare the results of running the same 2D code with PSE and 
TCFC formulations of Gradients and Laplacians. 
     The code, detailed elsewhere in [5–7], is based upon Lagrangian particles 
(vortex and heat, independently treated) that, as computational elements, 
transport (with the velocity induced by the vorticity field) momentum/vorticity 
and energy. Vorticity is produced by the thermal gradient present in the flow 
field, in the context of validity of Boussinesq hypothesis. Heat is generated by 
the Thermal Boundary/Initial Conditions. Both vorticity and heat diffuse 
according to their transport coefficients and Laplacian terms. 
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     The formulation is based on a splitting technique of the convective and 
diffusive terms: it considers an hyperbolic equation for the trajectory of the 
blobs, and 2 parabolic equations for the diffusive processes, of thermal energy 
and vorticity, along the characteristics curves (trajectories).  
     The evaluation of the velocity from the vorticity field, needed to integrate the 
trajectories of the N blobs, is a classical N-Body problem that requires O(N2) 
operations. The code uses a Fast Multipole Method (FMM) that is a O(N) 
algorithm, capable of self organize in order to warrant an imposed error level on 
the calculation of the velocity field. 
     The resulting methodology has strong advantages, among the others: it is 
intrinsically unsteady, continuity is satisfied by definition, blobs move where 
they are needed (loci of strong gradients), asymptotic conditions are 
automatically satisfied, generates very robust codes (CFL condition removed). 
This will allow, with modern workstations and reasonable computing time, to 
simulate thermal free convection problems of engineering interest at realistic 
values of the Grashoff number. 
     The code is organized to perform, after a given number of computational 
steps, a regrid process, i.e. project the field on a regular grid. At time of the 
regrid the code automatically creates if it is the case, new blob particles to take 
into account the natural evolution of the flow. 
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Figure 8. 
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     Since regrid steps result in a somewhat viscous step, object of this analysis is 
to compare the capacity of use a value of “Regrid Steps” as high as possible still 
preserving the main characteristics of the solutions. 
     First we use the same low Regrid Steps=5, for both cases, with a low 
resolution grid. The figure shows the isotherm maps. 
     We note that the solutions are very similar at initial stages, PSE slightly more 
varying at late times. This is caused, perhaps by the smoothing effect of the 
regrid processes. Then we run the same case, low resolution grid, with larger 
Regrid steps =20. The figure below shows isothermal maps and velocity plots. 
We can note that for the PSE, at late times the velocities grow with untidiness 
and this cause an abnormal break up of the mushroom rising cup and of its stem. 
Further analysis with a much finer grid reveals indeed shapes and mushroom 
rising cup very similar to the ones given by the TCFC. 
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Figure 9. 

6 Conclusions 

Analysis and comparisons made in this paper confirm definitely the superiority 
of the TCFC for the representation of differential operators in blob mesh less 
methods. Preliminary tests with 3-D problems fully confirm such findings; 
details are reported in a companion paper [8]. 
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