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Abstract 

The bifurcation-load of a bending girder, the ideal lateral torsional buckling 
moment MKI, is of great importance for the verification of stability. The solutions 
in the literature exist almost exclusively for double-symmetrical cross sections. 
The whole problem considering the lateral torsional buckling is quite complex as 
the analytical solutions for determining the lateral torsional buckling strength 
exist in closed-form only for the most simple cases, e.g. for the case of a simply 
supported double symmetric beam of a constant cross-section under uniform 
moment. However, for most cases, in order to obtain the buckling load, 
numerical or approximate solutions are required. This article examines the 
problem of elastic lateral torsional bucking of simply supported, monosymmetric 
I and T-beams under two different transverse load cases. Correct and 
approximate Euro Code 3 (EC3) approaches for obtaining elastic lateral torsional 
buckling capacities of monosymmetric I and T-beams were investigated for each 
load case. Solutions were obtained in terms of the easily evaluated degree of 
beam monosymmetry, fβ , beam parameter, K , and monosymmetry parameter, rz. 
The results obtained are graphically presented and compared. It was found that 
approximation formulae for rz given by Kitipornchai and Trahair are much more 
accurate compared to the correct formulae than the approximation formulae 
proposed by EC3. T-beams are considered as a special case of monosymmetric I 
cross sections. In conclusion, the authors recommend utilisation of different 
types of cross sections for different types of loading and length of the beams. 
The result can be significant savings in material as well as increased stability of 
the structure regarding lateral torsional buckling of monosymmetric cross section 
girders. 
Keywords:  lateral torsional buckling, monosymmetric cross section, EC3, thin-
walled open cross section, monosymmetry parameter. 
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1 Lateral torsional buckling 

Lateral torsional buckling is a mode of structural failure in which one or more 
members (beams, trusses….) of a frame suddenly deflect and twist out of the 
plane of loading (Trahair [2]). If it is not prevented in the right way, lateral 
torsional buckling may reduce the load-carrying-capacity of the structure 
because members subjected to a flexure have much greater strength and stiffness 
in the plane of the loading (major principal axis) than in the minor principal axis. 
The implication is that structural members are subjected to a failure by lateral 
torsional buckling before they even reach their full in-plane capacity.  
     This problem is frequent and it is perceived at slender members or structures, 
and so, of great importance in the design of steel structures. Also, it often occurs 
in the construction phase. This kind of structure deformation does not concern 
only individual members, but also occurs in rigid-jointed structures, where 
continuity of rotations between adjacent members causes them to interact during 
buckling. 
     Lateral torsional buckling of a member, as a combination of lateral buckling 
and torsional buckling, is a case in which transverse displacements of a member, 
out-of-plane deflection v and in-plane deflection w, occur in combination with 
rotation ϑ, around its major axis. 
 

   

Figure 1: Elastic bending and buckling. 

     A beam, which is bent in its stiffer principal plane, may buckle out of that 
plane by deflecting laterally out-of-plane v and rotating (twisting) ϑ, as shown in 
the Figure 1(b). These deformations are interdependent. For example, a twist 
rotation ϑ of the beam will cause the in-plane bending moment My to have an 
out-plane component Myϑ as shown in Figure 2(a), which will cause lateral 
deflections v. Conversely, lateral deflections v will cause the moment My to have 
a torque component Myv' as shown in Figure 2(b), which will cause twist 
rotations ϑ. 
     Lateral torsional buckling is resisted by combinations of the bending 
resistances EIzd2v/dx2 and -EIyd2w/dx2 and the torsional resistances GJtdϑ/dx and 
-EIwd3ϑ/dx3 (Trahair [2]). 
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Figure 2: Interdependence of v and ϑ . 

2 Buckling capacities of monosymmetric I-cross sections  

2.1 Description of the system, boundary conditions and load cases 

In this paper the single span beams, simply supported in-plane 
( 0ww L0 == , 0w,w L0 ≠′′ ,) and simply supported out-of-plane are considered. 
The ends of the beams, that are simply supported out-of-plane, are fixed against 
out-of-plane deflections and twist rotations 0vv L0L0 =ϑ=ϑ== , but are 
unrestrained against minor axis rotations L0 v,v ′′ (so that 0vv L0 =′′=′′ ) and against 
warping displacements proportional to L0 , ϑ′ϑ′ (so that 0L0 =ϑ ′′=ϑ ′′ ), Figure 3(c). 
     The beams are assumed to be perfectly straight and untwisted before loading 
and are exposed to the loads that initially cause deflections only in the plane of 
loading. It is also assumed that the direction of the load remains unchanged 
during buckling.  
     Within this paper the central concentrated load, Figure 3(a) and uniformly 
distributed load case, Figure 3(b) were examined. 
 

 
(c) 

Figure 3: System, boundary conditions and load cases. 

2.2 Differential equations 

Differential equilibrium equations (Trahair [2]) for a simply supported beam 
with monosymmetric cross-section under a uniform moment induced by equal 
and opposite end moments M, are shown in Figure 4.  
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0)M()vEI( yz =′′ϑ+′′′′
    (1) 

0)rM(vM)GI()EI( zyytW =′ϑ′−′′+′ϑ′−′′ϑ ′′         (2) 
with the boundary conditions:    

 0vv L,0L,0L,0L,0 =ϑ′′=ϑ=′′=                             (3) 
 

 
 
 
 

Figure 4: Simply supported beam under end moments. 

     Terms )rM( zy ′ϑ′  are associated with the monosymmetry property rz, called 
the monosymmetry parameter of the cross section or “Wagner effect”, which is 
given by 
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zS is the distance between the centroid and shear centre and Iy is the major axis 
moment of inertia. 
     Many authors have developed various approximate formulas for rz. One of 
them was developed by Trahair and Kitipornchai (Kitipornchai and Trahair [4]) 
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in which Iz/Iy is the ratio of the second moment of area of the section about 
minor and major axes respectively, hs is the distance between shear centres of the 
flanges. This formula has very good accuracy and is used for practical purposes. 

2.3 Buckling capacities of monosymmetric I cross-sections 

In the case of double symmetric cross sections the tensile and compressive 
bending stresses are equal and the flanges are at the same distance from the shear 
centre. That leads to increasing buckling resistance caused by tensile stresses 
balanced by increasing buckling action caused by compressive stresses. 
However, this balance is upset in monosymmetric beams. When such a beam 
twists during buckling, the longitudinal bending stresses exert a torque around 
the axis of twist of the member. This torque causes an effective change in the 
torsional stiffness from GIt to (GIt+Myrz), in which My is the major axis moment 
and rz is the monosymmetry parameter. As a consequence, when the larger 
flange is in compression the buckling resistance is increased, and opposite 
(Anderson and Trahair [5]). 
     The elastic critical moment, MKI, of the monosymmetric I-beam under 
uniform moment is a solution of eqns (1) and (2) and is given as: 
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Figure 5: Monosymmetric I-cross sections. 

where EIz is the minor axis flexural rigidity, GIt is the torsional rigidity, L is the 
length of the beam. The next parameters are K , the beam parameter, also called 
the torsion parameter and βf, the measure of monosymmetry or degree of 
monosymmetry: 
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where hs is the distance between shear centres of the flanges. The values of K  
for practical beams are in the range between 0.1 and 2.5 with low values 
representing long beams and/or compact cross-sections and high values 
corresponding to short beams and/or slender cross-sections.  
 

 

Figure 6: Various cross sections depending on βf. 

     These two parameters, βf and K , enable easily visualization of the 
monosymmetric I-beam. 

2.4 Euro Code 3 - buckling formulae   

The general formula according to Euro Code 3 for a beam of uniform cross 
section, elastic critical moment for lateral torsional buckling, MKI  is given by 
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in which C1,C2,C3 are factors depending on the loading and boundary conditions, 
k and kw are effective length factors and these coefficients are given in Annex F 
of Euro Code 3.  
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where za is the coordinate of the load application point and  zs is the coordinate 
of the shear centre. For an I-section with unequal flanges it is recommended to 
calculate the warping section constant, Iw by the following formula 

( ) 2
SZffW hI1I β−β=                        (10) 

where hs is the distance between the shear centres of the flanges.  
     Using eqn (8) and zj calculated by eqn (9)2 the correct values of  MKI were 
obtained. Also, the approximate formula for zj was proposed in Annex F of Euro 
Code 3,  

  for βf >0.5 ( ) 2/h128.0z Sfj −β=                             (11) 
  for βf <0.5 ( ) 2/h120.1z Sfj −β=           (12) 

Now using equation (8) and an approximate equation for zj (11) or (12) the 
approximate values of elastic critical moment MKI were obtained. It should be 
mentioned that the relation between the previously explained monosymmetry 
parameter Zr  (eqn (4)) and zj is rz=2zj. For all examined load cases the 
coefficients k = kw =1.0. 

2.5 Parametric investigation 

In the following the obtained results of the elastic critical moment for lateral 
torsional buckling MKI calculated by the previously explained approaches will be 
presented:  

• EC3 (correct formulae), 
• EC3 (approximate formulae) 

considering monosymmetric I-cross-sections with the following values of the 
monosymmetry degree βf = 0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0. 
     Investigation was carried out on 9 cross-sections based on the following: IPB1 
(HEA)140, IPB1(HEA)500, IPB1(HEA)900, IPB(HEB)140, IPB(HEB)500, 
IPB(HEB)900, IPE120, IPE330 and IPE550, but for each of these cross-sections 
investigation was carried out for eleven values of the monosymmetry degree βf, 
see Figure 6. For βf =0.5 the cross section actually have dimensions of HEA 500; 
for βf =0 it is an inverted T-cross sections with dimensions of the web and the 
flange as of HEA 500. For the wanted values of βf and for fixed dimensions of 
one flange it is easy to calculate the dimensions of the other flange. 
     To obtain the cross-section properties (Iz, It, Iw, etc.), FEM software 
RUBSTAHL-KSTAB 2000 is used (Kindmann [7]).  For each cross-section,  
investigations were done for loads applied at the top flange, shear centre and 
bottom flange, respectively, for each value of beam parameter, K ( K = 0.1; 0.5; 
1.0; 1.5; 2.0  and  2.5) and for each degree of monosymmetry βf. All this was 
done for the two earlier explained load cases. 
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     To enable a comparison of results between monosymmetric I-cross sections 
with different degrees of monosymmetry, βf it was necessary to calculate the 
dimensionless elastic critical moment 
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Considering the topic of load-carrying capacity for lateral torsional buckling of 
monosymmetric I-cross-sections, the following investigations have been done: 

• influence of monosymmetry degree, βf to lateral torsional capacity, MKI 
for different values of beam parameter, K  (which means for different 
beam length),  

• deviations [%] of rz obtained by the approximate formulas (EC3 and 
Kitipornchai and Trahair formulae) from the correct formulae given by 
EC3. 

The results are given below. 

3 Numerical results 

For the central concentrated load case for all examined cross sections and a load 
applied at the top flange, shear centre and bottom flange it was found that the 
best capacities have highly monosymmetric cross sections with βf = 1.0 and 0.9. 
For the uniformly distributed load case, opposite to the previous load case where 
the distribution is smooth, the additional influence of beam parameter K has 
been noticed. Here, when the load is applied at the top flange, and K ≥1.5 the 
best capacities have cross sections with βf = 0.9; 0.8 ;1.0, respectively. But for 
K < 1.5, as well as in the case when the load is applied at the bottom flange, load 
capacity is distributed smoothly and the best capacities have cross sections with 
βf =1.0. When the load is applied at the shear centre the behaviour of the cross 
section concerning the lateral torsional buckling is different: for K ≥1.0 the best 
capacities have cross sections with βf = 0.8 followed by 0.7 and 0.9. It is 
interesting to mention that for shear centre loading and for K >1.5 even the 
double symmetric cross section (βf =0.5) has greater capacity than the T-beam (βf 
=1.0). Figure 7 shows elastic critical loads, MKI, of monosymmetric I beams 
under central concentrated load applied at top flange, shear centre and bottom 
flange. Figure 9 shows MKI of the monosymmetric I beams under uniformly 
distributed load applied at the top flange, shear centre and bottom flange.  
     The Kitipornchai and Trahair approximate formulae for calculation of rz are 
reported to be of good accuracy in a range between 0.1 ≤  βf ≤  0.9 (deviation 
from correct formulae up to 6%). In the case of highly monosymmetric cross 
sections for which fβ  approaches 0 or 1,0 the deviation is up to 18%, as opposed 
to the EC3 approximate formulae for which the deviation is up to 50%, Figure 8. 
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Figure 7: Central concentrated load.  
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Figure 8: Deviations [%] of rz. 
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Figure 9: Uniformly distributed load.  

4 Conclusions 

Influence of the monosymmetric cross section shape on lateral torsional buckling 
capacity has been investigated in this paper.  
     These results based on EC3, where it was found that the best capacities have 
cross sections with βf =1.0 (0.9), are different in comparison with previously 
investigated approaches of RUBSTAHL-KSTAB 2000 (Djurić [1]) and 
Kitipornchai and Trahair (Kitipornchai and Trahair [4]) where for the same load 
cases the capacity of the T-beam is much lower then for beams with βf = 0.9 and 
0.7.  

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 46,
 www.witpress.com, ISSN 1743-355X (on-line) 

Computational Methods and Experimental Measurements XIII  125



     Also it was found that the approximate formulae for the monosymmetry 
parameter rz given by Kitipornchai and Trahair is more accurate in comparison to 
the rz correct formulae than the EC3 approximation formulae.  
     After this extensive theoretical and numerical research, it appears necessary to 
experimentally verify these approaches in order to determine which is the most 
accurate in describing the behaviour of real models.  Using the approximation in 
respect to the accurate formula for calculation of rz, the calculation time would 
be significantly shortened, which would be very important for the design of 
demanding structures. It has been theoretically demonstrated that certain 
monosymmetric I cross sections possess higher bearing capacity to lateral 
torsional buckling than the double symmetrical I cross sections. Using the 
monosymmetric cross sections, considerable savings could be accomplished, and 
the steel structure weight would be reduced. This is very important for 
contemporary engineering practice. 
     Experimental investigation is a present occupation of the authors. 
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