
A formulation of a multi-wave elastodynamic 
infinite element 

K. Kazakov 
Department of Structural Mechanics, VSU “Luben Karavelov”, Sofia, 
Bulgaria  

Abstract 

In this paper, a formulation of a multi-wave elastodynamic four and eight node 
infinite element is proposed.  Such a kind of element is appropriate for         
multi-wave soil-structure interaction problems. The formulation follows the 
standard infinite element formulation steps which are the same as for the Finite 
element method after mapping the infinite element domain to a finite element 
domain. It is shown that if only one wave function is used (only one frequency) 
the proposed multi-wave elastodynamic infinite element is reduced to a single-
wave elastodynamic infinite element.   
     The mapping and the Lagrange isoparametric shape functions for a 2D 
axisymmetric four and eight node multi-wave elastodynamic quadrilateral 
infinite element are also given. The basic aspects of the continuity along the 
finite/infinite element (artificial boundary) line are discussed in brief. In this type 
of model such a line marks the boundary between the near and the far field of the 
model.  
     The formulation is appropriate for wave propagation problems only.   
Keywords:  wave propagation, infinite elements, finite element method,           
soil-structure interaction. 

1 Introduction 

This section is devoted to the review of the historical background of infinite 
elements from the original works to the latest contribution. Exterior domain 
scattering problems appear in many engineering fields such as electrodynamics, 
magnetics, fluid and thermal analyses and so on. Wave propagation in an elastic 
infinite media and scattering of waves on bodies in a fluid which extends 

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 46,
 www.witpress.com, ISSN 1743-355X (on-line) 

Computational Methods and Experimental Measurements XIII  97

doi:10.2495/CMEM070101



infinitely are of particular interest. The difficulty in such problems when 
numerical methods are used arises from the unbounded domain that has to be 
discretized. Many suggestions and ideas for the treatment of the exterior domain 
have been presented and discussed in a number of research papers for the period 
of three decades. The exterior (infinite) domain cannot be discretized with 
standard finite elements. A lot of efforts have been spent in the development of 
new infinite element formulations and techniques, based on the changes of the 
polynomial shape functions with trigonometric or exponential forms.  
     In soil-structure interaction problems one possible approach is just to truncate 
the computational domain at some distance (line) away and to impose some 
“appropriate” boundary conditions. Such a line is called an “artificial” boundary. 
In this case viscous, absorbing or transmitting boundary conditions can be used. 
It is evident that the computational efficiency depends then on the localization of 
the “artificial” boundary and the type of the boundary conditions. In many cases 
such techniques give acceptable results. In soil-structure interaction problems 
that approach is known as the Substructural approach.  

2 Earlier infinite element method works 

The infinite element method was introduced about three decades ago in the 
original work of Bettess [5]. Then this method have been developed and refined 
in many works. Between them are the works of Pissanetzky on the 
magnetostatics and Kim on the magnetic field problems. The original Bettess 
formulation is similar to the finite element concept except the element domain. 
In this formulation the domain extends toward infinity in one direction. The 
corresponding shape functions are analytically integrable over the element. Such 
an infinite element is directly applicable to the Finite element method.  
     The mapped infinite elements were developed by Zienkiewicz et al. [18]. 
These elements are based on polynomial shape functions, attenuating in the 
infinity.  The mapping technique assures direct integration.   

  A mathematically precise variational formulation of infinite elements has 
only recently been proposed [15].  

3 Practical classification of infinite elements 

From a practical point of view infinite elements can be classified into five 
classes: 

• classical infinite elements, 
• decay infinite elements, 
• mapped infinite elements,  
• elastodynamic infinite elements and 
• Wave envelope infinite elements. 

  The origin of the idea and the development of every one of the above classes 
are difficult to be dated. The first class is based on the original so-called 
“classical” formulation of the infinite elements. In the decay, infinite element 
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decay functions from different mathematical types are used. The mapped infinite 
elements are developed by usage of mapping techniques. These techniques map 
the infinite domain of the element into a finite. The obtained element is similar to 
the classical finite element. The latest researches of infinite elements are devoted 
to the development of the elastodynamic infinite elements and the wave envelope 
infinite elements. In some cases the last two classes can be considered as a 
special combination of the mapped and decay infinite elements.   

4 Multi-wave elastodynamic infinite element formulation 

The displacement field in the multi-wave elastodynamic infinite element can be 
described in the standard form by a finite number of shape functions based on 
wave propagation functions [6] as 
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where ( )ω,, zxNiq  are the standard shape displacement functions, ( )ωiqp  are 

the generalized coordinates associated with ( )ω,, zxNiq , n is the number of 
nodes for the element and m is the number of wave functions included in the 
formulation of the infinite element. For horizontal wave propagation the shape 
displacement functions can be expressed as: 
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where ( )ωξ ,qW  are wave functions related to a horizontal propagation (in ξ  

direction) and ( )ηL  is a Lagrange polynomial. The infinite element domain is 
shown in fig.1. By taking into account only the real parts of the wave functions, 
the equations of the wave propagation can be written as 
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where sc and pc  are the velocities of the S-waves and P-waves respectively.  
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Figure 1: The infinite element domain. 

     If the number m is known these functions can be collected preliminary as 
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where ϖ  is the lowest frequency and qϖω = . The coefficients qA  can be 
written as: 
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Now so-called united shape function can be written as   
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The procedure described by the equations (4)–(6) can be treated as a superposing 
procedure based on a finite number of terms, where the real components of the 
wave functions ( )ωξ ,Re qW  are called “preliminary” shape functions. The 

coefficients qA  are generalized coordinates with only one component, 
corresponding to the node i. 
     It is easy to be shown that in the case of only one wave function used in the 
computational model, only one frequency, the proposed multi-wave 
elastodynamic infinite element is reduced to a single-wave elastodynamic infinite 
element.  It can be treated as a special case. Then  

( ) ( ) ( ) ( )ωξηω ,Re,,, WLzxiqNzxiN ==       (9) 
or 

           ( ) ( ) ( ) ( )ξη WLzxiqNzxiN Re,, == .                    (10) 

5 Two dimensional mapped infinite element 

The next step is to generate mapping to map the infinite element domain to a 
finite domain and vice versa. Mapping functions and the Lagrange isoparametric 
shape functions for a 2D axisymmetric four node quadrilateral mapping infinite 
element and for a 2D axisymmetric eight node quadrilateral mapping infinite 
element can be written as follows. 

5.1 2D axisymmetric four node quadrilateral mapping infinite element 

5.1.1 Mapping functions 
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5.1.2 Lagrange isoparametric shape functions (displacement field) 
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5.2 2D axisymmetric eight node quadrilateral mapping infinite element 

5.2.1 Mapping functions 
( )( ) ( ) ( )( )

( )( ) ( )( )
ξ

ξη
ξ

ξη
ξ

ηξη
ξ

η
ξ

ηξη

−
++

+
−

++
+

+
−

+−−+
+

−
−

+
−

−−−−
=

1
11

2
1

1
11

2
1

1
11

1
12

1
11 2

ML

KJI

xx

xxxx
         (14) 

 
( )( ) ( ) ( )( )

( )( ) ( )( )
ξ

ξη
ξ

ξη
ξ

ηξη
ξ

η
ξ

ηξη

−
++

+
−

++
+

+
−

+−−+
+

−
−

+
−

−−−−
=

1
11

2
1

1
11

2
1

1
11

1
12

1
11 2

ML

KJI

yy

yyyy
        (15) 

5.2.2 Lagrange isoparametric shape functions (displacement field) 
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5.3 Mass and stiffness matrices  

The stiffness and mass matrices can be given in a standard of the Finite element 
method form as  
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where [ ]N  are the shape functions and the vectors { }iB  in the matrix [ ]B  are 
written as  
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where [ ]1J  is the Jacobian matrix which defines the geometrical mapping and 
can be written as 
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The domain differential edΩ  must also be written in terms of the local 
coordinates as 

 
[ ] ξηddJdxdyd e ==Ω     (20) 

 
Subject to the evaluation of { }iB  and edΩ , which involves the mapping 
functions, the element stiffness and mass matrices may not be computed with 
standard Gaussian procedure.  

6 Continuity through finite and infinite elements  

The continuity through finite and infinite elements can be enforced in exactly the 
same way as between two finite elements in the case they have the same degrees 
of freedom and the degree of approximation. A sketch of the boundary between 
finite and infinite elements is given in fig. 2. 
 

Figure 2: Sketch of the boundary between finite and infinite elements. 

7 Conclusion 

This paper proposes a formulation of a multi-wave elastodynamic infinite 
element, appropriate for multi-wave soil-structure interaction problems. In the 
case of only one included wave function, the proposed multi-wave 
elastodynamic infinite element is reduced to a single-wave elastodynamic 
infinite element.   

iξ  
iη ieΩfη

feΩ fξ
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     The formulation follows the standard infinite element formulation steps 
which are the same as in the Finite element method after the mapping the infinite 
domain to a finite domain of the element. 
     Also the mapping and the Lagrange isoparametric shape functions for a 2D 
axisymmetric four node multi-wave elastodynamic quadrilateral infinite element 
and for a 2D axisymmetric eight node multi-wave elastodynamic quadrilateral 
infinite element are given.   
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