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Abstract

Although Value-at-Risk (VaR) has been widely adapted in financial management,
Conditional Value-at-risk (CVaR), which is also known as mean excess loss, mean
shortfall, or tail VaR, has also gained importance over the past decade. This is
largely owing to the more appealing mathematical properties of the latter. Based
on Rockafellar and Uryasev’s idea, we are going to look into the CVaR under an
ellipsoidal distribution. With the ad-hoc primal-dual interior-point algorithm, we
will also focus on the technique that minimizes the CVaR under the framework of
portfolio selection.
Keywords: Conditional Value-at-Risk (CVaR), Value-at-Risk (VaR), interior point
algorithm, ellipsoidal uncertainties, clustered scenarios, Risk Management, port-
folio management.

1 Introduction

Risk Management plays an important role in assets allocation. It entails the exer-
cise of control over some statistical characteristics of the uncertain portfolio return.
Conditional Value-at-risk (CVaR), which is also known as mean excess loss or tail
VaR, has gained importance in this aspect over the past decade. This is largely
owing to the more appealing mathematical properties compared to the VaR. Based
on Rockafellar and Uryasev’s [1, 2] idea, we are going to look into the CVaR
under the ellipsoidal uncertainties. A portfolio selection problem, using CVaR as
the objective, will be discussed in the framework of stochastic optimization. To
model the ellipsoidal uncertainties, we will propose a “Clustered Tree”, which is
deviated from the traditional scenario tree [3, 4, 5] in the sense that each discretiza-
tion in the latter is now represented by an ellipsoidal cluster. We will also work out
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the solution method using the ad-hoc primal-dual interior-point algorithm [6] fol-
lowed by numerical results.

2 Derive the conditional Value-at-Risk

Let f (φ, r) = −φT r be our loss function with the portfolio vector φ and uniform
random return vector r ∈ E := {r ∈ Rn | (r − c)T Q(r − c) ≤ ρ2} ⊂ Rn. Without
loss of generality, we assume Q to be the identity matrix (otherwise, we can do the
transformation r̃ = Q

1
2 (r−c)+c) so that r lies on a sphere with a density function

p(r) equal to the inverse of its volume, i.e. p(r) := 1
�nρn [7], where �n := π

n
2

�( n
2 +1)

.
The probability of f (φ, r) not exceeding a threshold α is then given by

�(φ, r) =
∫

f (φ,r)≤α

p(r)dy.

As a function of α for fixed φ, � is the cumulative distribution function for the loss
associated with φ. It completely determines the behavior of this random variable
and is fundamental in defining VaR and CVaR. With a specified probability level
β ∈ (0, 1), the β-VaR and β-CVaR values for the loss random variable associated
with φ are given by:

V aRβ(φ) := αβ(φ) := min{α ∈ R | �(φ, α) ≥ β} (1)

CV aRβ(φ) := 1

1 − β

∫
f (φ,r)≥αβ(φ)

f (φ, r)p(r)dr (2)

In the first formula αβ(φ) comes out as the left endpoint of the nonempty interval
consisting of the values α such that �(φ, α) = β, since �(φ, α) is continuous
and nondecreasing with respect to α. In the second formula, the probability that
f (φ, r) ≥ αβ(φ) is therefore equal to 1 − β. Hence CV aRβ(φ) comes out as
the conditional expectation of the loss associated with φ relative to that loss being
αβ(φ) or greater.

Our objective is to minimize the β-CV aR, but solving this directly seems to be
difficult owing to the nature of its definition in terms of the β-V aR value (αβ(φ))
and the often poor mathematical properties of that value. Fortunately, we can han-
dle a far simpler expression introduced by Rockafellar and Uryasev:

Fβ(φ, α) := α + 1

1 − β

∫
r∈B

[f (φ, r) − α]+p(r)dr.

A crucial feature of Fβ is its joint convexity with respect to φ and α. A very sig-
nificant result in their paper is that minimizing CV aRβ(φ) over the set of possible
φ’s, say X, is equivalent to minimizing Fβ(φ, α) over the set (φ, α) ∈ X × R, i.e.

min
φ∈X

CV aRβ(φ) = min
(φ,α)∈X×R

Fβ(φ, α). (3)

Since Fβ(φ, α) is convex with respect to (φ, α), assuming X to be a convex set,
the joint minimization is a convex programming problem. This is a high motivation
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leading us to explore this function in our settings. We now go into the details of the
integration in Fβ . As p(r) is also a constant, we omit this term for the time being.

Consider the case when α+φT c

‖φ‖ < ρ:∫
r∈E

[f (φ, r) − α]+dr =
∫

r∈E
[−φT r − α]+dr

=
∫

(r−c)T (r−c)≤ρ

φT r≤−α

(−φT r − α)dr

=
∫

r̃T r̃≤ρ

φT r̃≤−φT c−α

(−φT r̃ − φT c − α)dr̃

=
∫ −α−φT c

‖φ‖

−ρ

(−‖φ‖t − φT c − α)(ρ2 − t2)
n−1

2 dt

= −(φT c + α)

∫ −α−φT c
‖φ‖

−ρ

(ρ2 − t2)
n−1

2 dt

− ‖φ‖
∫ −α−φT c

‖φ‖

−ρ

t (ρ2 − t2)
n−1

2 dt

= −(φT c + α)g1(φ, α) − ‖φ‖g2(φ, α),

where

g1(φ, α) =
∫ −α−φT c

‖φ‖

−ρ

(ρ2 − t2)
n−1

2 dt

g2(φ, α) =
∫ −α−φT c

‖φ‖

−ρ

t (ρ2 − t2)
n−1

2 dt

We writing the constant term as Aβ,n := p(r)

1−β
= 1

(1−β)�nρn , the function now
becomes

Fβ(φ, α) =




α − Aβ,n((φ
T c + α)g1(φ, α) + ‖φ‖g2(φ, α)),

α + φT c

‖φ‖ < ρ;

α,
α + φT c

‖φ‖ ≥ ρ.

(4)
where, for α+φT c

‖φ‖ < ρ,

∇φg1 =
(

ρ2 −
(

α + φT c

‖φ‖
)2)n−1

2
(

− c

‖φ‖ + (α + φT c)
φ

‖φ‖3

)

∂g1

∂α
= − 1

‖φ‖
(

ρ2 −
(

α + φT c

‖φ‖
)2)n−1

2
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∇φg2 = −α − φT c

‖φ‖
(

ρ2 −
(

α + φT c

‖φ‖
)2)n−1

2
(

− c

‖φ‖ + (α + φT c)
φ

‖φ‖3

)

∂g2

∂α
= α + φT c

‖φ‖2

(
ρ2 −

(
α + φT c

‖φ‖
)2)n−1

2

The above derivatives will be zero otherwise. So, the first and second derivatives
are

∇φFβ =




−Aβ,n

(
cg1 + φ

‖φ‖g2

)
,

α + φT c

‖φ‖ < ρ;

0,
α + φT c

‖φ‖ ≥ ρ.

∂Fβ

∂α
=




1 − Aβ,ng1,
α + φT c

‖φ‖ < ρ;

1,
α + φT c

‖φ‖ ≥ ρ.

∂2Fβ

∂φi∂α
=




Aβ,n

‖φ‖

(
ρ2 −

(
α + φT c

‖φ‖
)2)n−1

2
(

ci − (α + φT c)φi

‖φ‖2

)
,

α + φT c

‖φ‖ < ρ;

0,
α + φT c

‖φ‖ ≥ ρ.

∂2Fβ

∂φ2
i

=




Aβ,n

‖φ‖

[(
ρ2 −

(
α + φT c

‖φ‖
)2)n−1

2
(

ci − (α + φT c)φi

‖φ‖2

)2

−
(

1 − φ2
i

‖φ‖2

)
g2

]
,

α + φT c

‖φ‖ < ρ;

0,
α + φT c

‖φ‖ ≥ ρ.

∂2Fβ

∂φi∂φj

=




Aβ,n

‖φ‖
[(

ρ2 −
(

α + φT c

‖φ‖
)2)n−1

2
(

ci − (α + φT c)φi

‖φ‖2

)
(

cj − (α + φT c)φj

‖φ‖2

)
+ φiφj

‖φ‖2
g2

]
,

α + φT c

‖φ‖ < ρ;

0,
α + φT c

‖φ‖ ≥ ρ,

∀i �= j
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3 Single cluster model and numerical algorithm

As the usual portfolio selection model, we would consider the constraint set which
includes no shorting selling, meeting (at least) the target return R, and the budget
constraint. By (3) and (4), the model of minimizing the β-CV aR becomes

min Fβ(φ, α)

s.t. φT e = 1

φT c ≥ R

φ ≥ 0

We will use the interior point algorithm again to solve the problem. For conve-
nience, we add the slack variables φn+1, s := (s1, · · · , sn)

T to the inequalities and
obtain:

φT c − R − φn+1 = 0

−φ + s = 0.

The Langrangian function is given as

L(x, α, y, z) = Fβ(φ, α) + y1(φ
T e − 1) + y2(φ

T c − R − φn+1) − zT x

where x =
(

φ

φn+1

)
∈ Rn+1, y =

(
y1

y2

)
∈ R2, and z =

(
z′

zn+1

)
=




( z1

...

zn

)

zn+1


 ∈ Rn+1

The first order KKT conditions are

∇φFβ(φ, α) + y1e + y2c − z = 0

(∇αFβ(φ, α) =)1 − Aβ,ng1(φ, α) = 0

(∇φn+1L(x, α, y, x) =) − y2 − zn+1 = 0

φT e − 1 = 0

φT c − R − φn+1 = 0

−x + s = 0

zisi = 0, i = 1, · · · , n + 1

(z, s) ≥ 0

Writing the no-shorting selling constraints (with the slack variable φn+1) as a vec-
tor function h(x) = −x, the Jacobian of it will be Jh(x) = −I(n+1)×(n+1). Hence,
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the modified Newton step used for interior-point algorithm for the equality condi-
tions becomes



∇2
xL ∇α(∇xL) ∇y(∇xL) Jh(x)T 0(n+1)×(n+1)

∇x(∇αL) ∇2
αL ∇y(∇αL) 02×(n+1) 02×(n+1)

∇x(∇yL) 02×1 ∇2
yL 02×(n+1) 02×(n+1)

Jh(x) 0(n+1)×1 0(n+1)×2 0(n+1)×(n+1) I(n+1)×(n+1)

0(n+1)×(n+1) 0(n+1)×1 0(n+1)×2 S Z








x


α


y


z


s




=




−∇xL

−∇αL

−∇yL

−(h(x) + s)

−SZe + σµe




where

• S =




s1

. . .

sn+1


, Z =




z1

. . .

zn+1


,

• µ = sT z
n+1 , σ ∈ (0, 1) is arbitrarily chosen,

• ∇α(∇xL(x, α, y, z)) =




∂2Fβ

∂φ1∂α

...
∂2Fβ

∂φn∂α

0


 = ∇x(∇αL(x, α, y, z))T ,

• ∇2
αL(x, α, y, z) = ∂2Fβ

∂α2 ,
• ∇y(∇αL(x, α, y, z)) = 01×2 = ∇α(∇yL(x, α, y, z))T ,

• ∇y(∇xL(x, α, y, z)) =
(

1n×1 c

0 −1

)
= (∇x(∇yL(x, α, y, z)))T ,

• ∇2
xL(x, α, y, z) =

(∇2
φFSD(φ) 0n×1

0n×1 0

)
,

and ∇2
yL(x, α, y, z) = 02×2

4 Multi-clusters model

We now go to explore the multiple clusters model. Suppose there are m clusters.
Our return r could now be r(k) with a probability of ω(k) and whose expected return
are c(k) for j = 1, · · · ,m. In other words, each r(k) is in an ellipsoid E (k) := {r ∈
Rn | (r − c(k))T Q(k)(r − c(k)) ≤ (ρ(k))2}. Again, for simplicity, we assume all
Q(k)’s are identity matrices and all ρ(k)’s are equal to ρ. So, the clusters are now
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only differed by the centres c(k)’s. We would also consider a function like (4) in
order to minimize the CV aR. In fact, it is a weighted average of (4). Let

F
(k)
β (φ, α)

:=




α − Aβ,n((φ
T c(k) + α)g

(k)

1 (φ, α) + ‖φ‖g(k)

2 (φ, α)),
α + φT c

‖φ‖ < ρ;

α,
α + φT c

‖φ‖ ≥ ρ,

where g
(k)

1 and g
(k)

2 are the same as g1 and g2 respectively except that c is replaced

by c(k). Then our objective function for α+φT c

‖φ‖ < ρ is derived as follows.

FMC : =
m∑

k=1

ω(k)F
(k)
β

= α + 1

1 − β

m∑
k=1

ω(k)

∫
r∈E (k)

[f (φ, r) − α]+p(r)dr

= α + Aβ,n

m∑
k=1

ω(k)

∫
r∈E (k)

[−φT r − α]+dr

= α + Aβ,n

m∑
k=1

ω(k)

∫ −α−φT c(k)

‖φ‖

−ρ

(−‖φ‖t − φT c(k) − α)(ρ2 − t2)
n−1

2 dt

= α − Aβ,n

m∑
k=1

ω(k)[(φT c(k) + α)g
(k)

1 (φ, α) + ‖φ‖g(k)

2 (φ, α)]

with the derivatives

∂FMC

∂φ
= −Aβ,n

m∑
k=1

ω(k)

(
cg

(k)

1 + φ

‖φ‖g
(k)

2

)

∂FMC

∂α
= 1 − Aβ,n

m∑
k=1

ωkg
(k)

1

∂2FMC

∂φi∂α
= −Aβ,n

m∑
k=1

ω(k) ∂g
(k)

1

∂φi

= Aβ,n

‖φ‖
m∑

k=1

ω(k)

(
ρ2 −

(
α + φT c(k)

‖φ‖
)2)n−1

2
(

c
(k)
i − (α + φT c)φi

‖φ‖2

)
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∂2FMC

∂φ2
i

= Aβ,n

‖φ‖
m∑

k=1

ω(k)

[(
ρ2 −

(
α + φT c(k)

‖φ‖
)2)n−1

2
(

c
(k)
i − (α + φT c(k))φi

‖φ‖2

)2

−
(

1 − φ2
i

‖φ‖2

)
g

(k)

2

]

∂2FMC

∂φi∂φj

= Aβ,n

‖φ‖
m∑

k=1

ω(k)

[(
ρ2 −

(
α + φT c(k)

‖φ‖
)2)n−1

2

×
(

c
(k)
i − (α + φT c(k))φi

‖φ‖2

)(
c

(k)
j − (α + φT c(k))φj

‖φ‖2

)
+ φiφj

‖φ‖2
g

(k)

2

]
,

∀i �= j.

We can see that our objective function is a linear combination of convex func-
tions (F (k)

β ), which is still convex. Hence we can apply the same techniques as
before to solve the model:

min FMC(φ)

s.t. φT e = 1

φT

( m∑
k=1

ω(k)c(k)

)
≥ R

φ ≥ 0

In particular, the numerical procedure will be only differed by the derivatives
such that those of Fβ is now replaced by those of FMC , and the explicit forms are
already shown above.

As a reminder, it is worth mentioning that the corresponding β-V aR value (the
optimal value of α) comes out as a by-product of the optimization of β-CV aR, but
this optimal value α is not equivalent to the result of minimizing αβ(φ) directly
over the same constraint set. However, since β-CV aR(φ) ≥ β-V aR(φ), solutions
to our problem should also be good from the perspective of minimizing αβ(φ). We
will go through the numerical results in the next session.

5 Numerical results

Suppose there are three scenarios in next stage. We will assume they are all spheres
instead of ellipsoids. Here are the expected rates of return for three stocks in each
of the cluster. In other words, these are the centres of the spheres. We set a radius
of 0.4 for each.

Stocks \ Scenarios 1 2 3

A 2 1.2 0.8

B 1.8 1.3 0.7

C 0.5 1.2 1.9
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Table 1: Numerical results for the CVaR model.

β 0.85 0.90 0.95 0.99

portfolio 0.296568668 0.286307431 0.274452573 0.250280625

0.281468101 0.287049666 0.293294229 0.310341706

0.421963231 0.426642903 0.432253197 0.439377668

E[φT r] 1.250766974 1.250159468 1.249442324 1.248303690

CV aR −1.130975111 −1.092842583 −1.046622223 −0.987803416

V aR −1.239149005 −1.174644069 −1.100725596 −1.011797682

We may regard cluster 1 and 3 as the two extreme states of the economy, while
cluster 2 may be regarded as a stable economy. In this sense, we assign a probabil-
ity of occurrence arbitrarily to each state as follows.

Cluster 1 2 3

Probability 1
4

1
2

1
4

Applying our notations, we will have the following:
• c(1) = (2, 1.8, 0.5)T

• c(2) = (1.2, 1.3, 1.2)T

• c(3) = (0.8, 0.7, 1.9)T

• ρ(k) = ρ = 0.5 ∀ k = 1, 2, 3
• ω(1) = .25
• ω(2) = .5
• ω(3) = .25

Using the primal-dual interior-point algorithm with the modified Newton step
shown in Section 3, we can solve our model efficiently. By varying the threshold
parameter β representing the confidence level, the numerical results are shown in
Table 1.

Agreeing with the model, the result shows that R is almost an independent factor
unless it reaches its the critical value (1.3) or a higher level of confidence (β > 0.9)
is of our concern. Also, the CV aR as well as the associated V aR is decreasing as
we increases our confidence level β, which is in line with our common sense that

6 Conclusion

After investigating into the numerical results, we may conclude that the CVaR
model is reasonably practical in the sense that the numerical results meet our intu-
ition. As a matter of fact, some other measured can also be derived based on our
clustered tree, for instance, the downside risk measure and the probability of a cer-
tain level of attainment. The close form solutions are also as nice as the CVaR.
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risk has to be eliminated for a greater certainty (or β).



However, there is a hinderance for our clustered tree to develop further into a
two-stage tree. The main challenge lies on the recourse problem in the stochastic
programming, in which we will suffer from an infinite number of constraints.

Some further directions of this area could be trying to alternate the distribu-
tion from the uniform one to others. A step density function that cumulates more
“mass” towards the center of the ellipsoid may be considered. Meanwhile, we may
also extend our discussion to a broader class of distributions, namely, the radial
distribution. If this extension is successful, it may result in a wider application of
our tree, since the commonly used Gaussian distribution also falls into this class.
An artificial data set is created for the numerical tests instead of data set that gen-
erated from proper sampling techniques because we have failed to find a suitable
set of sample data so far. Therefore, searching for a set of proper real market data
for the implementation is also an important issue.
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