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Abstract 

Empirical results from several studies indicate that changes in interest rates and 
changes in credit spreads are negatively related in the short run. These findings 
are further investigated by examining the dependence structure between interest 
rate and credit risk factor changes that are computed from sovereign and 
corporate bond indices. Several copulas (Gaussian, Student t, BB1, and Frank 
copula) are calibrated and their goodness-of-fit is compared. No clear pattern of 
the dependence structure can be observed as it varies substantially with the 
duration and – concerning the credit risk factor changes – the rating of the 
obligors. The Student t copula’s fit in terms of the AIC goodness-of-fit measure 
is superior to that of all other copulas. The null hypothesis of a specific copula 
being the true copula can be rejected for the Student t copula in the least cases. 
Additionally employing a likelihood-ratio test, the null hypothesis of a Gaussian 
copula can be rejected in favour of a Student t copula. The Gaussian copula 
seems to underestimate the probability of joint strong risk factor changes, while 
the Student t copula seems to overestimate it. 
Keywords: copula, dependence, short-term, interest rate risk, credit risk, risk 
measurement. 

1 Introduction 

Credit spreads, the difference in yield between corporate and government bonds 
of similar maturity, reflect the credit risk associated with corporate bonds. The 
dependence of interest rate risk, i.e. the risk associated with changes of the 
interest rate term structure, and credit risk, i.e. the risk associated with rating-
migrations or defaults of obligors, is an interesting topic to explore in the context 
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of risk measurement, as it enables an improvement of the risk aggregation 
process. 
     Several empirical studies report that short-term changes in the level of 
interest rates are negatively related with changes of credit spreads: when interest 
rates rise, credit spreads tend to narrow and vice versa (Longstaff and Schwartz 
[10], Duffee [5], Neal et al. [12], Collin-Dufresne et al. [3], and Papageorgiou 
and Skinner [13] find a negative relationship for monthly changes, Leake [9] and 
Pape and Schlecker [14] for weekly changes and Leake [9] and Wagner et al. 
[18] for daily changes. However, Neal et al. [12] report a positive relationship for 
a long-term horizon (36 months) which is not supported by the theoretical 
literature) This is sometimes interpreted as a high level of interest rates being 
related to a low level of credit spreads. Such a relationship is in accordance with 
the widely used structural credit risk models based on the contingent claim 
approach by Merton [11] if one assumes that an increase in interest rates does 
not trigger a drop in the obligors’ asset values. It is also consistent with business 
cycle developments, where in times of contraction the interest rates and the 
credit quality tend to decrease jointly, while in times of expansions they tend to 
increase jointly. This is associated with central banks’ cyclical adaptation of the 
interest rates. 
     This paper focuses on the explicit dependence structure, or copula, for one-
day interest rate and credit risk factor changes that are computed from sovereign 
and corporate bond indices. Copulas are rather a new instrument in risk 
management that have attracted a lot of attention recently. One advantage of 
copula-based approaches is that they allow for a separate modelling or 
calibration of the marginal distributions and the dependence structure (the 
copula). Copulas allow to combine arbitrary marginal distributions to a joint 
distribution. 
     The paper is structured as follows. Section 1 explains the computation of the 
risk factors. Section 2 gives a short introduction to copula-based approaches and 
section 3 contains the empirical investigation. 

2 Data and computation of the risk factors 

The data base includes daily sovereign and corporate bond indices from the 
iboxx € index family for Euro-denominated fixed-coupon bonds for the period 
from January 31st, 2000 to September 15th, 2006. For both sovereign and 
corporate bond indices, subindices with specific maturity bands are considered. 
These maturity bands are: (i) all maturities, (ii) 1Y to 3Y maturities, (iii) 3Y to 
5Y maturities, (iv) 5Y to 7Y maturities, and (v) 7Y to 10Y maturities. 
     The corporate bond indices’ constituents are further grouped according to 
their ratings. These ratings are: (i) all ratings, (ii) AAA-rated, (iii) AA-rated, (iv) 
A-rated, and (v) BBB-rated. 
     We are interested in the dependence structure of joint risk factor changes, 
specifically of joint interest rate and credit risk factor changes. We define the 
interest rate risk factor changes at day t as the log-returns of the sovereign bond 
indices, ij,t, with maturity bands j 
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}5,...,1{lnln 1,,,,, ∈∀−= − jPPi tjsovtjsovtj .    (1) 

     If there is an upward shift in the yield curve, we will observe negative interest 
rate risk factor changes, while the contrary holds for a downward shift of the 
yield curve. The credit risk factor changes at day t, cj,k,t, are defined as the excess 
returns of corporate bonds over sovereign bonds for a given maturity band and a 
given rating 

}5,...,1{},5,...,1{lnln ,1,,,,,, ∈∈∀−−= − kjiPPc tjtkjtkjtkj .           (2) 

     The corporate bond indices’ log-returns are adjusted by subtracting the 
sovereign bond indices’ log-returns such that the resulting risk factor changes 
cj,k,t only display the change in the value of the corporate bond indices that is due 
to a change in the credit quality of the constituents, assuming a similar 
composition of the sovereign and corporate bond indices with identical maturity 
band concerning duration, and assuming a constant risk-appetite of the market 
participants and constant premia for the corporate bonds’ liquidity risk. 
     From these riskless returns and excess returns, we construct data pairs that 
consist of (ij,t, cj,k,t) for maturity bands j and rating classes k, resulting in 25 
bivariate empirical sample pairs. 
     A closer look at the risk factor changes shows that they all are non-Gaussian. 
Using a Jarque-Bera test (Jarque and Bera [8]), the null hypothesis of normally 
distributed marginal distributions can be rejected at the 1% significance level in 
all cases (in fact they can be rejected even at the 0.012% significance level). 
Hence, a copula-based approach clearly seems preferable to the assumption of a 
multivariate Gaussian distribution for the data sample at hand. 
     For many of the risk factor changes, autocorrelation is detected. To adjust the 
data for autocorrelation, an AR(2)-model is fitted where the observed risk factor 
changes are modelled as 

tttt rrr εβββ +++= −− 23121     (3) 
where rt is either ij,t or cj,k,t. The coefficients and their statistical significance are 
estimated using the standard OLS-estimates of a classical normal linear 
regression.(generally, in the context of estimating AR models, alternative 
estimation methods are preferred to the OLS-method, as the estimated standard 
errors of the coefficients are downward biased. However, the estimates of the 
coefficients are consistent and the bias reduces as the sample size increases) If 
the estimates of either β2 or β3 turn out not to be statistically significantly 
different from 0 at the 5% significance level, models of the type rt = β1 + β2rt-1 + 
εt and rt = β1 + β3rt-2 + εt, respectively are estimated. If both β2 and β3 turn out 
not to be statistically significantly different from 0, rt = β1 + εt is modelled, 
where r≡1β . For 21 out of the 25 credit risk factor changes, AR(2) models are 
fitted. For only one of the interest rate risk factor changes, autocorrelation is 
detected. Here, an AR(1)-model is fitted. 
     Being interested only in the innovations that cannot be explained by lagged 
values of the observed returns, the autoregressions’ residuals are used as the 
empirical return observations in what follows. (A part of the empirical analysis 
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was also conducted for the unadjusted data. The results do not differ strongly 

autocorrelation-adjusted data pairs include 1,727 observations each. 

3 Copulas 

This paper focuses on the investigation of the goodness-of-fit of selected 
copulas. The term copula was introduced by Sklar [17] in 1959 (a similar 
concept for modelling dependence structures of joint distributions was 
independently proposed by Höffding [7] some twenty years earlier). 
     Copulas are functions that combine or couple (univariate) marginal 
distributions to a multivariate joint distribution. Sklar’s theorem (using a slightly 
different notation in the original article) states that a n-dimensional joint 
distribution function F(x) evaluated at x = (x1, x2, …, xn) may be expressed in 
terms of the joint distribution’s copula C and its marginal distributions F1, F2, …, 
Fn as 

( ) ( ) ( ) ( )( ) n
nn xFxFxFCF Rxx ∈= ,...,,, 2211 .    (4) 

     The copula function C is itself a multivariate distribution with uniform 
marginal distributions on the interval [ ] 111 :,1,0 UUU →= nC . 
     As far as the calibration of joint distribution functions from empirical data is 
concerned, copula-based approaches allow for a separate modelling of (i) the 
marginal distributions (in the present case the univariate distributions of the 
interest and credit risk factor changes) and (ii) the dependence structure (the 
copula). 
     We shall restrict our empirical investigation to some selected copulas from 
the family of elliptical and Archimedean copulas. These are: the Gaussian and 
Student t copula (elliptical copulas), the BB1 copula and its two special cases, 
the Clayton and the Gumbel copula, and the Frank copula (Archimedean 
copulas). Arbitrary marginal distributions that are combined by a copula to joint 
distributions are referred to as meta-distributions (meta-Gauss, meta-Student t, 
meta-BB1, etc.). 
     The above-mentioned copulas assign different probabilities to joint extreme 
observations. For example, a Student t copula assigns a higher probability to 
joint extreme observations than does a Gaussian copula. This is referred to as 
positive tail dependence.(formally, lower and upper tail dependence are defined 
as λL = limα→0 P(u1≤ α  | u2≤ α) and λU = limα→1 P(u1>α | u2>α). Positive tail 
dependence is prevalent if λL and/or λU is positive) Some copulas assign 
different probabilities to joint extreme positive deviations from the median than 
to joint extreme negative deviations (asymmetric tail dependence). 
     Figure 1 displays contour plots of bivariate meta-Student t, meta-Clayton, 
meta-Gumbel, and meta-Frank distributions with standard normal marginal 
distributions with a Spearman’s rho of 0.4 (top row) and 0.8 (bottom row). 
Additionally, for reasons of comparison, contours of a Gaussian distribution with 
identical marginal distributions and identical correlation are displayed. It can be 
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seen that the Student t copula assigns a higher probability to joint extreme co-
movements than does the Gaussian copula. Also the symmetric nature of the tail 
dependence can be identified visually. The Clayton copula’s lower tail 
dependence and the Gumbel copula’s upper tail dependence can also be 
identified well. The Clayton copula’s lower tail dependence exceeds the Gumbel 
copula’s upper tail dependence. The Frank copula assigns a lower probability to 
joint extreme co-movements than a Gaussian copula. 
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Figure 1: Contour plots of bivariate meta-Student t (parameter ν = 3), meta-
Clayton, meta-Gumbel, and meta-Frank distributions with standard 
normal margins an a Sperman’s rho of 0.4 (top row) and 0.8 
(bottom row). 

     Some copulas allow to model both positive and negative dependence in their 
‘standard’ versions by assigning appropriate copula-parameters. Amongst these 
copulas are e.g. the Gaussian, Student t and Frank copula. Other bivariate 
copulas like e.g. the BB1 copula and its two special cases, the Clayton and 
Gumbel copula in their ‘standard’ version allow to model positive dependence 
only.(in fact, the Clayton copula may also be used in its standard version to 
model negative dependence if the copula parameter θ є [−1, 0). Such a 
parameterisation is not further considered in this paper) Copula rotation allows 
to transform copulas such that they may be used to model negative dependence 
also. Further, copula rotation allows to transform (bivariate) copulas depending 
on whether and/or where the empirical data at hand requires the copula to display 
positive tail dependence.(we use rotated copulas C--, C+- and C-+ with densities c--

(u1, u2) = c(1-u1, 1-u2), c+-(u1, u2) = c(u1, 1-u2), andc-+(u1, u2) = c(1-u1, u2). C-- is 
also referred to as ‘survival copula’.) 
     To calibrate the copula parameters the pseudo-log-likelihood method (also 
referred to as CML – canonical maximum likelihood – or semiparametric 
method) is employed in this paper. Here, no assumptions have to be made on 
specific parametric marginal distribution. Scaillet and Fermanian [16] who 
conduct a Monte Carlo study to assess the impact of misspecified marginal 
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distributions suggest that ‘if one has any doubt about the correct modeling of the 
margins, there is probably little to loose but lots to gain from shifting towards a 
semiparametric approach’. 
     To measure the goodness-of-fit of the calibrated copulas, we use the Akaike 
information criterion AIC (Akaike [1]). This measure takes into account that the 
likelihood increases with the number of copula parameters by adjusting the 
measure accordingly. 
     Concerning statistical tests that explicitly test whether a parameterised copula 
at hand is indeed the true copula, one standard test does not yet exist. A widely 
used test is based on Rosenblatt’s [15] probability integral transform.(this test is 
presented e.g. in Dias [4], pp. 27f) Statistical tests based on the probability 
integral transform suffer from the fact that they test for the whole joint 
distribution (i.e. the copula and the marginal distributions) while the focus 
should indeed be on the copula. An alternative test that, roughly speaking, 
examines the null hypothesis of the Gaussian copula being the true copula 
against the Student t copula can be conducted with a likelihood ratio test, where 
the Gaussian copula is regarded as a limiting case of the Student t copula with 
ν → ∞. Research on statistical tests examining the goodness-of-fit of copulas is 
still ongoing. Other tests than the ones presented above have been proposed by 
e.g. Fermanian [6] and Berg and Bakken [2]. 
     The computing time for the copula-parameter estimation procedure and for 
the simulation of copulas varies considerably, depending on the copula.(the 
computations were done on a ‘standard’ personal computer (3.5 GHz processor, 
1 GB RAM), using the software ‘Matlab’, version 7.2, in a MS-Windows 
environment) The parameter estimation for a Student t copula takes about 150 
times as long as for the Gaussian copula. Simulations of a Gumbel and BB1 
copula take much (roughly 1,000 times) longer than those for the other copulas. 
This is due to the necessity of using numerical optimisation for the simulation of 
these two copulas. 

4 Empirical investigation 

This section contains the empirical investigation of the dependence structure of 
daily joint interest rate and credit risk factor changes described in section 1. 
Table 1 shows sample estimates of Spearman’s rho for the 25 bivariate empirical 
samples and reports whether they are statistically significantly different from 0. 
In all but 3 samples, the Spearman’s rho correlation measure is negative, which 
is in line with the reported empirical evidence on the short-term relationship 
between interest and credit risk factor changes. 
     Bivariate Gaussian, Student t, BB1, Clayton, Gumbel, and Frank copulas are 
calibrated to the 25 data-pairs, using the pseudo-log-likelihood method. For the 
BB1, Clayton and Gumbel copulas also the rotated versions are fitted. Results 
are reported only for the rotated version with the best goodness-of-fit in terms of 
the AIC. The average AIC that is obtained by the copulas is displayed in table 2. 
One can see that the Student t copula on average yields the best goodness-of-fit, 
followed by the BB1 copula. Both copulas yield a better goodness-of-fit than 
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their restricted versions, the Gaussian and the Clayton and Gumbel copulas, 
respectively. The Frank copula yields a substantially worse goodness-of-fit than 
the Student t and BB1 copulas. 

Table 1:  Spearman’s rho for the 25 bivariate observation pairs. 

 maturity bands  
rating all 1Y-3Y 3Y-5Y 5Y-7Y 1Y-10Y mean 

all -0.53*** -0.04* -0.25*** -0.28*** -0.35*** -0.29 
AAA -0.78*** -0.08*** -0.28***  0.00 -0.08*** -0.24 
AA -0.26***  0.10*** -0.05** -0.13*** -0.29*** -0.12 
A -0.43***  0.09*** -0.20*** -0.22*** -0.29*** -0.21 

BBB -0.56*** -0.21*** -0.23*** -0.28*** -0.30*** -0.32 
mean -0.51 -0.03 -0.20 -0.18 -0.26  

Statistically significantly different from 0 at the * 10%, ** 5%, *** 1% significance 
level. 

Table 2:  Mean AIC and number of times that H0: ‘copula at hand is the true 
copula’ can be rejected for the 25 data samples. 

  No. of times that H0 can be rejected at significance level 
 mean AIC 10% 5% 1% 
Gaussian -204 22 19 14 
Student t -266 3 1 0 

BB1 -237 12 11 6 
Clayton -186 19 17 6 
Gumbel -225 15 13 7 

Frank -207 17 11 10 
 
     The Student t copula is also the copula for which the null hypothesis of the 
copula at hand being the true copula can be rejected in least of the cases (see 
table 2). The null hypothesis of the BB1 copula being the true copula is rejected 
more often than the analogous null hypothesis for the Student t copula. The null 
hypothesis of the Gaussian copula being the true copula is rejected in most of the 
cases. 
     Additionally conducting a likelihood ratio test, the null hypothesis of the true 
copula being the Gaussian copula can be rejected in all of the cases in favour of 
the Student t copula at the 1% (and even at the 0.2%) significance level. This 
result is not surprising when the parameter distribution of the estimate of Student 
t copula parameter ν is regarded (as the Gaussian copula corresponds to a 
Student t copula with ν → ∞): The highest value is 12.09, the lowest 2.83. The 
mean (median) value is 5.68 (5.17). 
     The results suggest that ‘positive tail dependence’(as the risk factor changes 
for the data sample at hand are generally negatively correlated, we define lower 
and upper ‘positive tail dependence’ for negatively correlated sample pairs in 
this paper as λL = limα→0 P(u1>1-α | u2≤ α) and λU = limα→0 P(u1≤α | u2>1-α). 
This definition differes from the ‘official’ definition of lower and upper tail 
dependence λL = limα→0 P(u1≤ α  | u2≤ α) and λU = limα→1 P(u1>α | u2>α)) could 
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be prevalent as the Student t and BB1 copulas that display positive tail 
dependence in all cases have a better goodness-of-fit than the Gaussian and 
Frank copula, which do not. The data sample at hand is large enough so that we 
may examine the potential existence of tail dependence in more detail. To do so, 
we introduce the concept of corner dependence, which is an empirical 
counterpart to the measure of positive tail dependence.  
     For positively correlated pairs in terms of Spearman’s rho, we define the 
empirical lower and upper corner dependence as  

( ) ( )ααλααλ αα −>−>=≤≤= 1ˆ|1ˆˆ,ˆ|ˆˆ
21,21, uuPuuP empirical

U
empirical
L       (5) 

where û1 and û2 are empirical estimates of the quantiles of the interest rate and 
credit risk factor changes. 
     For negatively correlated pairs in terms of Spearman’s rho, we define the 
empirical lower and upper corner dependence as 

( ) ( )ααλααλ αα −>≤=≤−>= 1ˆ|ˆˆ,ˆ|1ˆˆ
21,21, uuPuuP empirical

U
empirical
L     (6) 

     To compute e.g. the empirical lower corner dependence for positively 
correlated pairs, we first identify the observation pairs for which û2 ≤ α. The 
empirical lower corner dependence is the fraction of these pairs for which û1 ≤ α. 
     Furthermore, for the Gaussian, Student t and Frank copula (symmetric 
copulas), we define the corner dependence that is implied by a specific copula 
with parameters θ for positive or negative Spearman’s rho respectively as 

( ) ( )
α

αααλλ
α
ααλλ αααα

θθ ˆ;,1ˆˆ,
ˆ;,ˆˆ

,,,,
−−

====
CC implied

U
implied
L

implied
U

implied
L      (7) 

     For the BB1 copula (asymmetric copula) and its rotated versions we define 

( )
α
ααλ α
θ̂;,ˆ

,
Cimplied

L =  and  ( )
α

αααλ α
θ̂;1,112ˆ

,
−−+−

=
Cimplied

U       (8) 

for C and C-+ copulas, and 

( )
α

αααλ α
θ̂;1,112ˆ

,
−−+−

=
Cimplied

L  and ( )
α
ααλ α
θ̂;,ˆ

,
Cimplied

U =     (9) 

for C-- and C+- copulas. 
     For symmetric copulas (Gaussian, Student t and Frank) table 3 summarises in 
how many of the 25 cases the implied corner dependence exceeds both the lower 
and upper empirical corner dependence and in how many cases it is below for α 
є {0.05, 0.1}. The most evident observation is that the Frank and the Gaussian 
copula tend to underestimate the empirical corner dependence in all/most of the 
cases. The Student t copula overestimates the corner dependence in a lot more 
cases for α = 0.05 than it does for α = 0.1. 
     The corner dependence that is implied by the Student t and BB1 copulas is 
more closely examined in table 4, where the number of cases in which the lower 
and upper empirical corner dependence is over- or underestimated is reported. 
The Student t copula overestimates both lower and upper cornerdependence 
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more frequently than it underestimates these measures for α = 0.05. No such 
behaviour can be observed for the BB1 copula. 

Table 3:  Number of cases where the implied corner dependence are 
below/exceed the empirical corner dependence for symmetric 
copulas. 

a = 0.1 { }.. ˆ,ˆminˆ emp
U

emp
L

implied λλλ <  { }.. ˆ,ˆmaxˆ emp
U

emp
L

implied λλλ >  

Gaussian 22 0 
Student t 4 5 

Frank 25 0 
   

a = 0.05 { }.. ˆ,ˆminˆ emp
U

emp
L

implied λλλ <  { }.. ˆ,ˆmaxˆ emp
U

emp
L

implied λλλ >  

Gaussian 20 0 
Student t 1 12 

Frank 24 0 

Table 4:  Number of cases where the implied upper and lower corner 
dependence of the Student t and BB1 copula are below/exceed the 
empirical corner dependence. 

a = 0.1 
.ˆˆ emp

L
implied λλ <  .ˆˆ emp

L
implied λλ >  .ˆˆ emp

U
implied λλ <  .ˆˆ emp

U
implied λλ >  

Student t 10 15 14 11 
BB1 14 11 15 10 

     

a = 0.05 
.ˆˆ emp

L
implied λλ <  .ˆˆ emp

L
implied λλ >  .ˆˆ emp

U
implied λλ <  .ˆˆ emp

U
implied λλ >  

Student t 6 19 8 17 
BB1 14 11 10 15 

 
     Focussing on the deviation of the implied corner dependence from the 
empirical corner dependence, the values in table 5 reported for ‘diff. Ga λL’, 
‘diff. Ga λU’, ‘diff. t λL’, ‘diff. t λU’, ‘diff. B λL’, and ‘diff. B λU’ are the 
mean, median, and standard deviation of the log-differences of the implied and 
the empirical lower and upper corner dependence measures, 

empirical
L

implied
L αα λλ ,,

ˆlnˆln −  and empirical
U

implied
U αα λλ ,,

ˆlnˆln − , for the Gaussian, 
Student t and BB1 copula, respectively. Negative values indicate that the implied 
corner dependence is lower than the empirical corner dependence, which means 
that the parameterised copula underestimates the probability of joint excessive 
observations. The values presented in table 5 show that the Gaussian copula 
seems to systematically underestimate the probability of joint excessive events 
while the Student t copula overestimates them; in addition, these deviations are 
in absolute terms higher for α = 0.05 than they are for α = 0.1. However, the 
corner dependence implied by the Student t copula does not deviate as much 
from the empirical corner dependence as does the corner dependence implied by 
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the Gaussian copula. For the BB1 copula, the deviations for α = 0.05 are less 
pronounced than they are for the other two copulas, so one might infer that the 
BB1 copula’s fit in that region is better than that of the Student t copula. Still, 
remember that the Student t copula’s goodness-of-fit (indeed for the whole unit 
cube region) is superior in all cases to that of the BB1 copula, which allows for a 
flexible modelling of asymmetric corner dependence. This suggests that either 
this asymmetry is of minor importance as far as copula parameterisation for the 
data sample at hand is considered or that other asymmetric copulas than the BB1 
copula should be employed. 

Table 5:  Log-Differences between implied and empirical corner 
dependence. 

a = 0.1 
Diff. Ga 

λL 
Diff. Ga 

λU 
Diff. t λL Diff. t 

λU 
Diff. B 

λL 
Diff. B 

λU 
mean -0.22 -0.23 0.04 0.03 -0.04 -0.08 

median -0.17 -0.23 0.05 -0.03 -0.04 -0.04 
std.dev. 0.18 0.13 0.10 0.13 0.12 0.13 

       

a = 0.05 
Diff. Ga 

λL 
Diff. Ga 

λU 
Diff. t λL Diff. t 

λU 
Diff. B 

λL 
Diff. B 

λU 
mean -0.36 -0.39 0.14 0.12 0.00 -0.07 

median -0.42 -0.40 0.13 0.09 -0.03 0.02 
std.dev. 0.42 0.23 0.24 0.24 0.31 0.27 

5 Conclusion 

Several studies have reported that changes in interest rates and changes in credit 
spreads are negatively related in the short run. These results are more closely 
examined in the present paper, which focuses on the dependence structure, i.e. 
the copula, between daily interest rate and credit risk factor changes that are 
computed from Euro-denominated sovereign and corporate bond indices for the 
time period from January 31st, 2000 to September 15th, 2006. The time series 
were adjusted for autocorrelation. 
     The empirical investigation shows that the daily risk factor changes are 
negatively correlated, which is in line with the empirical literature on this 
subject. However, the dependence structure seems to be very heterogeneous in 
an unsystematic way, depending on the rating of the obligors (credit risk) and the 
time until maturity of the financial instruments. As none of the marginal 
distributions of the risk factor changes are normally distributed, a multivariate 
Gaussian distribution should not be assumed for risk measurement purposes. 
Copula-based approaches are a promising and easily implementable alternative. 
     Gaussian, Student t, BB1, Clayton, Gumbel and Frank copulas were 
calibrated to the data sample, employing the pseudo-log-likelihood method. The 
best fit in terms of the AIC goodness-of-fit measure is achieved by the Student t 
copula. A likelihood ratio test rejects the null hypothesis of a Gaussian copula in 
favour of a Student t copula in all cases considered. The BB1 copula also yields 
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good results (in terms of the AIC) and the goodness-of-fit is considerably better 
than for its two special cases, the Clayton and the Gumbel copula. However, the 
null hypothesis of the BB1 copula being the true copula is rejected quite often 
compared to the Student t copula. The Frank copula yields inferior results for the 
data sample at hand. Concerning the computing time needed for the estimation 
and simulation of copulas it is found that for Student t copulas parameter 
estimation takes very long while simulation is comparably fast and that the 
contrary can be said about the BB1 copula. One advantage of the Student t 
copula over the BB1 copula is that the former easily allows for a modelling of 
multidimensional copulas with a reasonable computational effort as far as 
simulation time is concerned – the simulation of a 5-dimensional copula takes 
only about 3 times as long as that of a bivariate copula. 
     Finally, the implied probability of joint strong risk factor movements is 
compared to the empirical probabilities. The Gaussian copula seems to 
systematically underestimate the probability of joint strong risk factor changes 
while the Student t copula seems to overestimate it. No such pattern can be found 
for the BB1 copula. 
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