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Abstract

Recent advances in mathematical finance established linkages among several key
concepts related to coherence, distorted risk measures, and information theory. The
purpose of this paper is to extend these theoretical results for empirical applications
in computational finance. First, we use a concentrated (dual) entropy approach
to derive a computational algorithm for estimating the parameters of a distorted
probability model associated with a coherent risk measure for a given sample
of observed data. Second, we derive the asymptotic sampling properties of the
estimated model parameters, which may be used to conduct classical hypothesis
tests or to form other statistical inferences based on the estimated coherent risk
measure. Third, we note that researchers may also require an estimate of the net
loss distribution, and we propose an information theoretic procedure for jointly
estimating the net loss probability model and the distorted probability distribution
associated with a particular coherent risk measure.
Keywords:coherence, distorted risk measure, entropy, extremum estimator, infor-
mation theory.

1 Introduction

Risk measures based on the distribution of potential asset losses or returns are
widely used in empirical finance, and prominent applications of these tools include
determining insurance premia, option prices, margin deposits for hedged and
speculative positions in futures markets, and capital reserve requirements for banks
and other firms (e.g., see Wirch and Hardy [1]). To be specific, suppose an asset
has risk or net loss represented by random variableX with cumulative distribution
function (CDF) F(x) = P(X ≤ x). A risk measure is a mapping ρ(X) : R → R

+
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that represents the price or cost associated with holding the risky position. For
example, the value–at–risk (VaR) with confidence level 1 − α for an asset with a
strictly continuous distribution is defined as

ρVaR(X) = F−1(1 − α) (1)

In words, the VaR risk measure is the 100(1 − α)% quantile of the net loss
distribution.

VaR is one of the most widely used risk measures because it is relatively easy
to compute from estimates of the net loss distribution and is very convenient to
interpret — the largest possible loss with lower tail probability 1−α. Although VaR
is commonly used in practice, several authors have noted that this risk measure is
flawed because it does not properly account for added risks. Artzner, et al. [2]
define an improved class of risk measures under the following conditions on
random variables X and Y in class X :

A1 Monotonicity: if FX(z) ≥ FY (z) for all z ∈ R, then ρ(X) ≤ ρ(Y )

A2 Positive homogeneity (of degree one): ρ(λX) = λρ(X) for all λ ∈ R
+

A3 Linear invariance: ρ(aX + b) = aρ(X)+ b for all a, b ∈ R

A4 Subadditivity: ρ(X + Y ) ≤ ρ(X)+ ρ(Y )

If these conditions are satisfied for all random variables X and Y in class X ,
then the risk measure is said to be coherent over the class (Definition 7, Artzner,
et al. [2]).

The limitations associated with value–at–risk arise because VaR does not satisfy
the subadditivity property (A4) and is not coherent. Consequently, researchers in
the mathematical finance literature have developed coherent risk measures that are
designed to satisfy all four conditions (A1–A4) and should improve on VaR. For
example, Artzner, et al. [2] propose the conditional tail expectation (CTE) or Tail–
VaR risk measure with confidence level 1 − α defined as

ρCTE(X) = E[X | F(X) > 1 − α] (2)

For practical purposes, the CTE risk measure is based on roughly the same
information required to compute VaR and should be relatively easy to use.
However, VaR remains to be widely used in practice, and researchers in this field
have worked to develop other coherent risk measures that are suitable for particular
applications.

2 Coherence, distortion, and entropy

The conceptual challenges associated with deriving coherent risk measures have
been eased by recent research outcomes that link coherence to other established
concepts and methods in the fields of mathematical finance and statistical informa-
tion theory. The key contributions in the recent literature are provided by McLeish
and Reesor [7], who show that

• Distorted risk measures based on distortions or transformations of the net
loss distribution are closely related to coherent risk measures
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• Distorted risk measures may be derived from the net loss distribution under
an information theoretic (entropy) optimization approach

Thus, we can use the information theoretic approach outlined by McLeish and
Reesor [7] to derive coherent risk measures.

Following Definition 4 presented by McLeish and Reesor [7], a distortion
function g is a right–continuous and non–decreasing function on the unit interval
[0, 1] with the end–point properties g(0) = 0 and g(1) = 1. Given g, the
associated distorted cumulative distribution functionF ∗ based on the original CDF
for a net loss variable (F ) may be formed as

F ∗(x) = 1 − g(S(x)) (3)

where S(X) ≡ 1 − F(X). The distorted probability density function is

f ∗(x) = f (x)g′(S(x)) (4)

where g′(z) = dg(z)/dz. Finally, following Definition 6 in McLeish and
Reesor [7], we can form a distorted risk measure as

ρg(X) =
∫ ∞

0
g(S(x))dx +

∫ 0

−∞
(g(S(x))− 1)dx = EF ∗(X) (5)

where the expected value of X is computed as a Choquet integral with respect to
the distorted probability distribution. Choquet integrals may be used to represent
non–additive probability measures but reduce to the common Lebesgue integral
under additive measures (see Denneberg [4] and Groes, et al. [13] for more details).

Distorted probability models and risk measures have been used by a large num-
ber of researchers in empirical finance, especially in insurance pricing problems
(for example, see Wang [8] and Wirch and Hardy [14]). For purposes of this paper,
the key property of distorted risk measures is provided by Theorem 5 in McLeish
and Reesor [7], which claims that the following statements are equivalent:

• The distortion function g is concave.
• The distorted risk measure ρg is coherent over the class of all random

variables.
Thus, we can use the distortion approach to derive coherent risk measures as long
as the distortion function is concave.

McLeish and Reesor [7] also propose an information theoretic approach to
derive distorted probability models, and their approach is based on the classical
maximum entropy and minimum cross–entropy procedures that Jaynes [9, 10]
originally developed for discrete probability distributions. The minimum cross–
entropy method may also be extended for use with continuous probability dis-
tributions, and the details are outlined in Appendix 3. A of the book by Golan,
et al. [5]). In either case, the basic purpose of the method is to recover a probability
distribution that satisfies some moment conditions (e.g., mean, variance). In
general, a probability distribution cannot be uniquely characterized by a finite
number of moments, so there are multiple candidate distributions for any particular
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problem. Accordingly, Jaynes recommends choosing the distribution that satisfies
these conditions and is closest to some target or reference distribution, and the
“closeness” of the distributions is measured with the Kullback–Leibler cross–
entropy functional (see Kullback [6]). One of the key contributions provided by
McLeish and Reesor [7] is the set of moment conditions, E[Gk(S(x))] = µk ,
required to derive five of the most commonly used distorted probability models by
the minimum cross–entropy method (see their Table 1).

Specifically, the information theoretic approach for deriving the distorted prob-
ability model is to minimize the cross–entropy objective function

I (f ∗, f ) =
∫

ln

(
f ∗(x)
f (x)

)
f ∗(x)dx (6)

subject to the known constraints∫
Gk(S(x))f

∗(x)dx = µk and
∫
f ∗(x)dx = 1 (7)

McLeish and Reesor [7] note that the entropy problem may be solved for f ∗ by
the method of Lagrange multipliers (i.e., calculus of variations), and the Lagrange
equation is

L(f ∗,λ) = I (f ∗, f )+
K∑
k=1

λk

[
µk −

∫
Gk(S(x))f

∗(x)dx
]

+ γ

[
1 −

∫
f ∗(x)dx

]
(8)

where λ = (λ1, . . . , λK)
′, λk is the Lagrange multiplier for the kth moment

constraint, and γ is the Lagrange multiplier on the additivity constraint in (7).
Although McLeish and Reesor [7] do not provide the minimum cross–entropy
solution for the distorted probability model

f ∗(x) = f (x) exp(
∑K
k=1 λkGk(S(x)))∫

f (x) exp(
∑K
k=1 λkGk(S(x)))dx

(9)

we can use this expression to derive

g′(S(x)) = f ∗(x)
f (x)

= exp(
∑K
k=1 λkGk(S(x)))∫

f (x) exp(
∑K
k=1 λkGk(S(x)))dx

(10)

By integrating (10), we can derive the implicit solution for the distortion function
provided by McLeish and Reesor [7] in their Equation (10)

g(S(x)) =
∫ S(x)

0
exp

( K∑
k=1

λkGk(S(z))− ψ(λ)

)
dz (11)

where ψ(λ) ≡ ln(
∫
f (x) exp(

∑K
k=1 λkGk(S(x)))dx) is the natural log of the

normalizing constant from (9). Finally, McLeish and Reesor [7] present their
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Theorem 4, which claims that the distortion function is concave if and only if

K∑
k=1

λkGk(S(z)) (12)

is non–increasing in z. Under this condition, a distorted risk measure derived
by the information theoretic approach will also be a coherent risk measure. The
relationship between the concavity of the distortion function g and coherence
(especially subadditivity) is also examined by Wang and Dhaene [11] and by Wirch
and Hardy [14].

3 Concentrated entropy approach to computation

The theoretical developments outlined in the preceding sections have greatly
expanded the conceptual range of risk measures available to researchers in math-
ematical finance. However, much of this effort has been focused on the analytical
properties of these tools, and researchers in empirical finance need information
about the computational and statistical properties of these tools in order to apply
them in practice. In this section, we outline a computational algorithm based on a
natural extension of the information theoretic approach developed by McLeish and
Reesor [7], and we use this approach to derive the asymptotic sampling properties
of the estimated risk measures in the following section.

To begin, suppose we have the sample moments for a given minimum cross–
entropy estimation problem, and we denote these sample estimates as µ̂1, . . . , µ̂K .
The key computational challenge to forming an empirical version of the distortion
function in Equation (8) is to derive the optimal value of the Lagrange multipliers,
λ̂1, . . . , λ̂K . Although it may be feasible to solve the problem in primal form as
stated in Equations (6) and (7), the number of software packages that can solve
such constrained numerical optimization problems is quite limited. Fortunately,
we can convert this estimation problem to an unconstrained maximization problem
that can be solved by a much wider range of numerical optimization software.

The key step is to form a concentrated or dual optimization problem by
substituting the implicit solution for the distorted density function (9) back into the
Lagrange expression for the primal version of the problem, (8). After simplifying
terms, the concentrated Lagrange equation is

M(λ) =
K∑
k=1

λkµ̂k − ln

[∫
f (x) exp

( K∑
k=1

λkGk(S(x))

)
dx

]
(13)

which is a function of the K-vector of Lagrange multipliers. If the minimum
cross–entropy problem has a unique interior solution, we can use the saddle–
point properties of the Lagrange equation to show that the concentrated objective
function M is a strictly concave function of λ such that

M(λ̂) >M(λ) (14)
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for all λ 	= λ̂. Thus, we can compute the optimal values of the Lagrange multipliers
by maximizing M with respect to λ without constraints. Further, we note that the
gradient of M

∂M
∂λk

= µ̂k −
∫
Gk(S(x))f

∗(x)dx for k = 1, . . . ,K (15)

is simply the set of moment conditions for the primal minimum cross–entropy
problem from (7), and this gradient information may be used to compute the
Lagrange multipliers under the Newton–Raphson or related numerical optimiza-
tion algorithms. For example, the maximum entropy algorithm proposed by
Ormoneit and White [12] may be extended to the minimum cross–entropy version
of the estimation problem.

4 Asymptotic properties of the model parameter estimator

Although the authors in the preceding literature do not focus on the interpreta-
tion of the Lagrange multipliers, these values represent the marginal change in
distortion (uncertainty) between the distorted distribution (F ∗) and the reference
distribution (F ) given a small increase in the associated moment values. In
empirical research, the estimated values of the Lagrange multipliers may be very
useful for model diagnostic and specification purposes. For example, we may wish
to test the statistical significance of one or more of the moment conditions in a
candidate probability model, and a model specification test for the j th moment
may be conducted under the null hypothesisH0 : λj = 0.

To begin, we assume the K-vector of sample moments µ̂ = (µ̂1, . . . , µ̂K)
′

imposed in the minimum cross–entropy problem (i.e., in the first constraint in (7))
are based on samples of size n and are

• Consistent such that µ̂
p−→ µ̂0 as n → ∞ where µ̂0 is the set of true

population moments under the distorted probability measure

• Asymptotically normal such that
√
n(µ̂− µ̂0)

d−→ N(0,�) as n → ∞
Following the results on extremum estimation presented in Theorems 2.7 and 3.1
by Newey and McFadden [3], we can show that the K–vector of Lagrange

multipliers λ̂ is consistent such that λ̂
p−→ λ0 as n → ∞ where λ0 is the set

of true Lagrange multipliers under the distorted probability model. We can also
derive the limiting normal distribution of the Lagrange multiplier estimators as

√
n(λ̂− λ0)

d−→ N(0,ψ−1�ψ−1) (16)

where

ψ = E

[
∂2M
∂λ∂λ′

∣∣∣∣
λ=λ0

]
= −EF ∗ [(G(S(X))− µ̂)(G(S(X))− µ̂)′] (17)

is the negative variance matrix of G(S(X)) = (G1(S(X)), . . . ,GK(S(X)))
′ under

the distorted probability model F ∗.
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To estimate the asymptotic variance matrix of λ̂, we could directly evaluate the
elements of ψ

�̂kk = −
∫
(Gk(S(x))− µ̂k)

2f ∗(x)dx (18)

�̂jk = −
∫
(Gj (S(x))− µ̂j )(Gk(S(x))− µ̂k)f

∗(x)dx (19)

by numerical integration under the distorted distribution f ∗. Alternatively, we can
rely on the special structure of the distorted density function f ∗ to estimate ψ by
importance sampling from the reference distribution f . Given m random draws
from f (denoted x1, . . . , xm), we can form the variance estimates as

̂̂�kk = −m−1
m∑
i=1

(Gk(S(xi))− µ̂k)
2wi (20)

̂̂� jk = −m−1
m∑
i=1

(Gj (S(x))− µ̂j )(Gk(S(x))− µ̂k)wi (21)

where

wi ≡ exp(
∑K
k=1 λ̂kGk(S(xi)))

m−1
∑m
i=1 exp(

∑K
k=1 λ̂kGk(S(xi)))

(22)

Under random sampling from f , the simulated variance components in (20)
and (21) converge in probability to the estimates in (18) and (19) as m → ∞.

We can also use importance sampling to estimate the coherent risk measure ρg
for a particular data set. Although we could substitute (11) into (5) and use direct
numerical integration to compute ρ̂g(X), the importance sampling estimator

ρ̂g(X) = m−1
m∑
i=1

xiwi (23)

is consistent under random sampling from f as m → ∞. For example, suppose
we have a net loss variable X that is distributed as a standard lognormal random
variable with mean 1.649 and variance 4.671. The VaR with α = 0.05 from (1)
is ρVaR = 5.18, and the CTE at the same level of significance from (2) is ρCTE =
8.55. Using these actual values as benchmarks, we can evaluate the performance
of the importance sampling estimators of VaR and CTE based on m = 5, 000
replications and various sample sizes (n). The simulation results are presented in
Table 1, and the sample bias and estimated standard errors decline as n increases,
as expected.

5 Joint estimation of the reference and distorted models

In practice, we may also have limited information about an appropriate specifi-
cation of the reference distribution f for the net loss outcomes. In this section,

 © 2008 WIT PressWIT Transactions on Information and Communication Technologies,  Vol 41,
 www.witpress.com, ISSN 1743-3517 (on-line) 

Computational Finance and its Applications III  181



Table 1: Importance sampling results, VaR and CTE.

Sample size n ρ̂V aR Std. error ρ̂CTE Std. error

250 5.0020 0.6529 8.3020 1.5030

500 5.1518 0.4792 8.5591 1.1368

1000 5.1673 0.3411 8.5339 0.7936

2500 5.1740 0.2209 8.5520 0.5087

we show how the minimum cross–entropy approach may be extended to jointly
estimate f and f ∗ from available data. In this case, we assume that we have a
reference distribution q(x) that represents our initial (pre–sample) estimate of f ,
and we use some sample moments related to the original data distribution (F ) to
update this estimate and form f . In particular, we can minimize the cross–entropy
between f ∗ and q under the following Kullback–Leibler objective function

I (f ∗, q) =
∫

ln

(
f ∗(x)
q(x)

)
f ∗(x)dx (24)

subject to an expanded set of moment conditions∫
Gk(S(x))f

∗(x)dx = µk and
∫
Hj(x)f

∗(x)dx = θj (25)

for k = 1, . . . ,K and j = 1, . . . , L plus the additivity constraint in (7). Here, we
use L additional moment conditions of the form EF ∗ [Hj(x)] = θj to describe the
properties of f and f ∗.

Following the discussion in Section 2, we can show that the minimum cross–
entropy solution for the distorted probability model is

f ∗(x) = q(x) exp(
∑L
j=1 δjHj(x)+

∑K
k=1 λkGk(S(x)))∫

q(x) exp(
∑L
j=1 δjHj (x)+

∑K
k=1 λkGk(S(x)))dx

(26)

where δj is the Lagrange multiplier for the j th moment constraint imposed on f ∗
in (25). The implicit form for the reference distribution is

f (x) = q(x) exp(
∑L
j=1 δjHj(x))∫

q(x) exp(
∑L
j=1 δjHj (x))dx

(27)

and the derivative of the distortion function is

g′(S(x)) = exp(
∑K
k=1 λkGk(S(x)))

∫
q(x) exp(

∑L
j=1 δjHj (x))dx∫

q(x) exp(
∑L
j=1 δjHj (x)+

∑K
k=1 λkGk(S(x)))dx

(28)

such that f ∗(x)/f (x) = g′(S(x)). Finally, the distortion function g may be
recovered from (28) by integration as in (11).
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To derive the large–sample properties of the model parameter estimators, we let
β = (δ1, . . . , δL, λ1, . . . , λK)

′ and k = (θ1, . . . , θL, µ1, . . . , µK)
′, and we then

assume that k̂
p−→ k0 and

√
n(k̂ − k0)

d−→ N(0,�) (29)

as n → ∞. The results for extremum estimators provided by Newey and McFad-
den [3] may be used to show that the vector of Lagrange multiplier estimators

is consistent such that β̂
p−→ β0 as n → ∞, and the limiting distribution of the

estimators is √
n(β̂ − β0)

d−→ N(0,�−1��−1) (30)

where
� = −EF ∗ [(A(X)− k)(A(X)− k)′] (31)

and A = (H1(X), . . . ,HL(X),G1(S(X)), . . . ,GK(S(X)))
′. As we show in the

preceding section, we can use importance sampling or other convenient numerical
integration tools to estimate the components of the asymptotic variance matrix for
β̂. Then, we can use the estimated asymptotic variance matrix to conduct classical
hypothesis tests or form other inferences related to the fitted probability model and
estimates of the coherent risk measure.

6 Conclusions

In summary, the proposed methods allow us to apply the recent theory related
to coherence, distorted risk measures, and information theory to problems in
empirical finance. The key innovations in this paper include an unconstrained
computation algorithm and the statistical properties of the coherent risk estimators,
and we use a few brief but familiar examples to demonstrate these claims.
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