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Abstract

In this paper we discuss the issue of portfolio ranking for a rational risk averse
investor with and without the option to buy a risk free asset. We find that in the
former case the use of Sharpe, Omega, Sortino, and Kappa rankings are all justified
although they follow from different definitions. We also find that for portfolios
with Gaussian distributed returns these rankings, as well as the Stutzer ranking,
are equivalent to each other.

Finally we prove that without a risk free asset all the above rankings are incom-
patible with being a rational risk averse investor and a different ranking is required.
We propose an exact analytical formula as well as an approximate formula for
practical use.
Keywords: portfolio ranking, skewness, kurtosis, Omega, non-Gaussian disribu-
tions.

1 Introduction

In this paper we discuss the issue of portfolio ranking and selection. We will con-
centrate on selecting one portfolio among a finite set of portfolios, where each
portfolio is characterized by its own distribution of returns p(x). This distribution
may be inferred from past performances and assumed to be persistent, or it may be
derived by some model of future performances.

We distinguish two main cases:

CASE #1 An amount A must be invested and it can be distributed between a risk
free asset (that pays a risk free rate r) and the selected portfolio.

CASE #2 An amount A must be invested exclusively in the selected portfolio.
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The two problems are apparently similar but they are conceptually different and
therefore have different solutions. In this paper we wish to clarify the difference
between the two, discuss ranking schemes in both cases, and propose a theoret-
ically sound ranking scheme for the second case in the presence of distributions
that exhibit arbitrary skewness and kurtosis.

We conclude that in case #2, and in presence of skewness and kurtosis, a rational
investor using the CARA utility function should select that portfolio with higher
value of

µ − mσ 2

2
+ m2σ 3S

6
− m3σ 4(K − 3)

720
(1)

where µ is the average return of the portfolio, σ is the standard deviation, S is the
skewness, K is the kurtosis, and m is the CARA subjective risk aversion parameter.

Eq. (1) extends a previous conclusion by Levy and Markowitz [16] by taking
into considerations the effects of skewness and kurtosis. Our formula provides a
simple practical way to select one out of many mutually exclusive portfolios.

In this paper we discuss only the issue of portfolio selection, not portfolio con-
struction. For a review, we refer the reader to the work of Ortobelli et al. [1].

In this analysis, we will always identify a portfolio with its distribution of returns
p since we are not interested in the composition of the portfolios.

2 Portfolio selection

In this section we discuss similarities and differences between CASE #1 and #2.
The main similarity between the two cases is that they both require subjective

choice. In Utility Theory [3, 4], this is the choice of a utility function U(x) and
its parameters. U(x) is a function that takes as input a possible return x from an
investment and outputs a number that represents the investor’s degree of satisfac-
tion associated with a return x.

In neoclassical economics, an investor is defined “rational” if
• the investor has a utility function U(x)

• the investor acts in order to maximize U(x)

• U(x) is monotonic increasing (higher return is preferred to lower return).
A common choice for the utility function is UCARA(x) ≡ −e−mx which is known

as the “Constant Absolute Risk Averse” utility function. m is the risk aversion
parameter and it is of the order 1.

We call a rational investor with a CARA utility function a “rational risk averse
investor” or, more simply, “investor”.

The investor will rank a portfolio p by weighting the utility of a return x with
the probability of that return p(x), thus he would use the ranking function

RU(p)
def=

∫ +∞

−∞
U(x)p(x)dx (2)

or an equivalent function.
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Two rankings function, R1 and R2, are equivalent if and only if they produce
the same ranking, i.e. if there is a monotonic function h that maps R2(p) into
R1(p) for every p. We will indicate the equivalence of two ranking functions with
R1 ∼ R2.

2.1 CASE #1: with risk free asset

In CASE #1 our investor can choose to invest part of the funds A into a risk free
asset, for example a US Threasury-bill. This means that given any two portfolios
p1 and p2 characterized by an average return and risk (standard deviation) µ1, σ1
and µ2, σ2 if

µ1 − r

σ1
>

µ2 − r

σ2
(3)

then the investor should never choose p2 over p1. This is because the investor can
invest a fraction α = σ2/σ1 of the total funds A into portfolio p1 and a fraction
(1 − α) into the risk free asset and obtain a new combined portfolio with the same
risk as portfolio p2 but a higher return, given by [6]

µ′ = (1 − α)r + αµ1 > µ2 (4)

Hence portfolio p1 is always preferable to portfolio p2.
If one applies this argument to every portfolio in the set, one finds that our

investor should invest part of the funds A into the portfolio p with the largest
value of

RSharpe(p)
def= µ − r

σ
(5)

This is the well known Sharpe ratio or Sharpe ranking function [7] [6].
The value of α is then determined by maximizing the utility function U . If the

expected returns of the portfolios have a Gaussian distribution then

α = α that maximizes
∫

U(αx + (1 − α)r)p(x)dx =
√

µ/r

mσ
(6)

If the return of the portfolios is not Gaussian distributed, the first equality in
eq. (6) remains true, while the second equality is only an approximation since the
integral must be performed numerically.

Similarly, if one adopts a definition of risk other than standard deviation of
returns the argument that led to the RSharpe measure remains valid, but σ must be
consistently replaced with the new measure of risk. For example, if one chooses to
measure risk as the downside risk only

σ−
n

def=
[∫ r

−∞
p(x)(r − x)ndx

] 1
n

(7)
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then σ is replaced by σ−
n , and the Sharpe ranking function is replaced by the Kappa

ranking function [11]

RKappa-n(p)
def= µ − r

σ−
n

(8)

The Kappa ranking function above is the Sortino and Van Der Meer [8] Sortino and
Price [9] Sortino and Forsey [10] ranking function when n = 2 and it is equivalent
to the Omega [12] ranking function when n = 1. A different ranking scheme has
been proposed by the Stutzer [14]. For a theoretical analysis of “good” vs “bad”
risk measures we refer the reader to the work of Artzner et al. [15].

We show in the last section that these rankings are all equivalent to the Sharpe
if returns are Gaussian. If returns are not Gaussian, Sharpe, Sortino, Kappa, and
Omega, are not equivalent because they follow from different definitions of
risk.

2.2 CASE #2: without risk free asset, the wrong way

In CASE #2, our investor has to choose a portfolio and invest the entire available
funds in it, hence the argument presented at the beginning of the previous section
does not apply. The reason behind the use of the Sharpe ranking (or the Sortino
ranking) falls apart as pointed out by Sharpe himself [6].

In this subsection we answer two questions:
• Is the use of the Sharpe ranking (or any of the other rankings) however

justified?
• If not, what is an appropriate ranking scheme that leads to the correct choice

for a rational risk averse investor?
Let’s examine first the Sharpe ranking function and assume that portfolio returns

are Gaussian distributed. An explicit computation shows that, for every Gaussian
portfolio p

RUnaive(p) ∼ RSharpe(p) (9)

where

Unaive(x)
def=

{
−1 (if x < 0)

+1 (if x ≥ 0)

}
(10)

and the monotonic mapping function between the two rankings is

h(y) = erf(y/
√

2) (11)

Therefore, an investor who ranks portfolios using the Sharpe function in CASE #2
is implicitly adopting the utility function in eq. (10 ). The problem here is that
eq. (10) is not a risk averse utility function. This function says that a positive return
x > 0 (gain) has a utility +1 and a negative return x < 0 (loss) has a utility −1.
This investor does not think that a 20% return is better than a 10% return, or that a
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loss of 100% is worse than a loss of 1%. The investor that uses the Sharpe ranking
function for CASE #2 is not a rational risk averse investor.

Under the assumption of Gaussian returns Sortino, Omega, Stutzer and Kappa
rankings are all equivalent (as proven in the last section), therefore the use of any
of these rankings, in the case considered here, is not consistent with being risk
averse.

Returns of real portfolios are, generally, non Gaussian distributed but, if a rank-
ing function works for a general distribution, it must work for Gaussian returns
too. Since this is not true for Sharpe, Sortino, Omega, Stutzer, nor Kappa, these
ranking schemes should not be used in the CASE #2.

2.3 CASE #2: without risk free asset, the right way

Our investor, a rational risk averse investor, would use the CARA utility function
to make choices and would rank portfolios using eq. (2) with U being UCARA. In
the last section we prove that RUCARA is equivalent to R∗ where

R∗(p)
def= − log(−RUCARA(p))/m (12)

= µ − mσ 2

2
+ m2σ 3S

6
− m3σ 4(K − 3)

720
+ O(m4σ 5) (13)

and
• µ is the average return of portfolio p,
• σ is the standard deviation of portfolio p,
• S is the skewness,
• K is the kurtosis (K − 3 is the reduced kurtosis)
• m is a parameter of the order of 1, that measures the risk aversion of our

investor,
• O(m4σ 5) is the order of terms that are ignored.

Notice that a positive skewness is good while a positive reduced kurtosis is bad
because it results in fatter tails for fixed σ .

For Gaussian distributed returns the formula in eq. (12) reduces to

R∗(p) = µ − mσ 2

2
(14)

and it is exact.
Note that the ranking 14 was originally proposed by Levy and Markowitz [16].

Our approximated formula, eq. (13) extends that result in the case of non-Gaussian
returns.

We conclude that a rational risk averse investor who has to choose one portfolio
among many and has to invest all funds in the selected portfolio, should make its
choice based on the ranking function in eq. (12). This is a general result and it does
not make any assumption on the distribution of the returns of the portfolios.
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3 Practical considerations

Our conclusions have an immediate practical applicability in CASE #2, i.e. when
the investor has to choose one and only one of mutually exclusive portfolios (or
investment alternatives) according only to past performance.

Here is an outline of the decision algorithm
• For each portfolio k collect the historical returns rkt (return for portfolio k at

time t) and measure

µk = (1/N)
∑

t

rkt

σk = (1/N)
∑

t

(rkt − µk)
2

Sk = (1/N)
∑

t

(rkt − µk)
3/σ 3

k

Kk = (1/N)
∑

t

(rkt − µk)
4/σ 4

k

(where N is the number of available data points)
• For each portfolio compute

Rankk = µk − mσ 2
k

2
+ m2σ 3

k Sk

6
− m3σ 4

k (Kk − 3)

720
(15)

• Sort the portfolios according to Rankk and select the one with the highest
rank.

If Sk = 0 and Kk = 0 our rank is equivalent to the formula proposed by Levy
and Markowitz [16].

Notice that the rank depends on whether on the time-scale of our analysis via our
choice of returns r , which can be daily returns, weekly returns, monthly returns,
etc. For a fixed skewness and kurtosis, their relative contribution to the rank
increases with the size of the time-scale. In any case, because of the 1/720 fac-
tor, the relative contribution of kurtosis is generally very small.

4 Proofs

4.1 Equivalence of ranking schemes for Gaussian distributions

In this section we prove that if p(x) is a Gaussian distribution with mean µ and
standard deviation σ , then the Sharpe, Sortino, Omega, Stutzer and Kappa ranking
functions are equivalent [5].

Two rankings, R1 and R2, are equivalent if and only if, for any two portfolios p1
and p2, R1(p1) < R1(p2) implies R2(p1) < R2(p2) and vice versa. This can only
occur if there is a monotonic increasing function h such that, for any portfolio p,
R2(p) = h(R1(p)).
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Kappa Proof:

RKappa−n(p)
def= µ − r

[∫ r

−∞(r − x)np(x)dx] 1
n

= h(RSharpe(p)) (16)

and

h(y) = π
1

2n 2
2−n
2n e

y2

2n y

[�( 1+n
2 )1F1(

1+n
2 , 1

2 ,
y2

2 ) − √
2�(1 + n

2 )1F1(1 + n
2 , 3

2 ,
y2

2 )] 1
n

(17)

(� is Euler’s Gamma function and 1F1 is an Hypergeometric function).
Omega Proof:

ROmega(p)
def=

∫ ∞
r (1 − Fp(x))dx∫ r

−∞ Fp(x)dx
= RKappa-1(p) (18)

(here Fp is the cumulative distribution function associated to p).
Sortino Proof:

RSortino(p)
def= µ − r

[∫ r

−∞(r − x)2p(x)dx] 1
2

= RKappa-2(p) (19)

Stutzer Proof:

RStutzer(p)
def= lim

T →∞
− log Fp(rT )

T
= h(RSharpe(p)) (20)

RStutzer is well defined only for portfolios with positive Sharpe ratio, and

h(y) = y2/2 (for y > 0 only) (21)

4.2 Equivalence of rankings skemes in presence of skewness and kurtosis

In this section we prove that RUCARA is equivalent to R∗.
Consider a portfolio characterized by a distribution of returns p. Let µ, σ, S,K

be the average, standard deviation, skewness and kurtosis of p.

RUCARA(p)
def=

∫ ∞

−∞
−e−mxp(x)dx =

∫ ∞

−∞
−e−mxp̃((x − µ)/σ)dx (22)

where p̃(y) = p(σy + µ)σ . With the change of variable y = (x − µ)/σ and a
Taylor series expansion in y of the exponential we obtain

RUCARA (pi) = −e−mµ
∑
i=0

(−mσ)i

i!
∫ ∞

−∞
yip̃(y)dy (23)

= −e−mµelog(1+ m2σ2
2 − m3σ3S

3! + m4σ4(K−3)
6! +O(m4σ 5))

= h(R∗(p))
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where h(y) = −e−my is monotonic increasing function in y, and

R∗(p)
def= − log(−RUCARA(p))/m (24)

= µ − mσ 2

2
+ m2σ 3S

6
− m3σ 4(K − 3)

720
+ O(m4σ 5) (25)

Hence the two ranking functions R∗(p) and RUCARA(p) are equivalent. This is a
general result and no assumption about the distribution p has been made.

In the special case of p Gaussian, we are able to perform the integration ana-
lytically without need for a Taylor expansion and we find that the following exact
relation holds [16],

R∗(p) = µ − mσ 2

2
(26)

5 Conclusions

In this paper we discuss the issue of portfolio selection for a rational risk averse
investor. We consider two cases: the investor is free to distribute funds between the
selected portfolio and a risk free asset; and the case when the investor has to invest
all funds in the selected portfolio.

In the first case we find that Sharpe, Omega, Sortino, and Kappa provide valid
ranking schemes, although they follow from different definitions of risk, σ , σ−

1 ,
σ−

2 and σ−
n respectively. We also find that, in the Gaussian case, Sharpe, Omega,

Sortino, Kappa, and Stutzer rankings are all equivalent. In the non-Gaussian case
these rankings are not equivalent [15, 1].

In the second case we find that, contrary to what is sometimes claimed, the use
of any of the above ranking schemes does not correspond to being a rational risk
averse investor. In fact, we prove that a rational risk averse investor (compatible
with the choice of the CARA utility function) would choose a portfolio according
to the ranking function in eq. (1), which takes into account the skewness of the
portfolio, S, and its kurtosis, K . Our formula, eq. (1), extends a result originally
due to Levy and Markowitz [16] in the case of non-Gaussian returns.
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