
A neural network approach to option pricing 

F. Mostafa & T. Dillon 
DEB1 Institute, Curtin University, Australia 

Abstract 

In this paper the pricing performance of the artificial neural network is compared 
to the Black-Scholes and the GARCH option-pricing model. The artificial neural 
network is trained on the implied volatility rather then the option price, which 
leads to an improved performance when compared to the competing models. The 
hedging performance of the neural network, GARCH option-pricing model and 
the Black-Scholes are also analysed. 
Keywords: neural networks, option pricing, hedging, implied volatility, GARCH 
option pricing model. 

1 Introduction 

Since the publication of the Black-Scholes model in 1973 (Black and Scholes 
[1]), it remains the most quoted scientific paper in the world. The model made a 
key contribution to option trading, where investors are able to calculate a fair 
value of an option contract. This model had its limitations, which stem from the 
unrealistic assumptions. The Black-Scholes behaviour has been well documented 
in literature (Henderson [2]). The most interesting stylised fact of the Black-
Scholes model that has captured the attention of researches and practitioners 
alike is the volatility skew (or volatility smile). This stylised fact can be seen 
when the implied volatility is backed out from the Black-Scholes formula and is 
plotted with respect to the option moneyness. The graph deviated from a flat line, 
which is a contradiction to the constant volatility assumption of the Black-
Scholes. 
     Researchers then turned to more sophisticated methods for option valuation 
using stochastic volatility models (Ritchken and Trevor [3], Peter and Kris [4],  
Engle and Mustafa [5], Duan [6] and Heston et al. [7]). The GARCH option 
pricing model (GOPM) introduced by  Duan [6] is based on a discrete-time 
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model of the economy. The GOPM is derived based on the locally risk-
neutralised probability measure where the option value can be calculated as a 
discounted expected value. In addition, the model allows the underlying asset 
return to follow a GARCH process (Bollerslev [8]). Consequently, eliminating 
the assumption of a constant volatility. This is indeed an attractive feature for the 
GOPM, however the main drawback of the model is that it does not have a 
closed form solution. Therefore, Monte Carlo simulation is used to optimise the 
models parameters. Duan and Simonato [9] have introduced empirical 
martingale simulation that speeds up the Monte Carlo simulation process.  
     Recently research has also adopted different methods for pricing options, 
such as neural networks (Karaali et al. [10]). The vast majority of neural 
networks research has been focused on forecasting financial time series  
(Schittenkopf et al. [11], Kaastra and Boyd [12]). Until the late 1990’s research 
on option pricing with neural networks was limited. To date most research 
compares the performance of neural networks to the Black-Scholes option-
pricing model (Meissner and Kawano [13], Amilon [14], Yao et al. [15], Tino et 
al. [16] and Bennell and Sutcliffe [17]). Most research demonstrates comparable 
or slightly better performance of neural networks to the tradition models. 
However, there has been no real attempt to compare the neural networks to more 
advanced models such as the GARCH option pricing model (GOPM). In Hanke 
[18], a neural network was constructed to give an approximate price to GOPM. 
This was achieved by training the network on different input combinations. 
Thus, utilising the network output as an approximation to the option pricing 
formula to overcoming the numerical simulation issues.  
     The aim of this paper is improve on the neural networks ability to price option 
out-of-sample by learning the Black-Scholes implied volatility. The implied 
volatility produced by the neural networks is then used in the Black-Scholes 
formula to produce the neural network valuation of the option.  The performance 
of the neural networks is then compared to the GARCH Option pricing model 
and the Black-Scholes based on the pricing and hedging criteria. Section two of 
this paper examines the competing models. The historical data used in this 
research is described in section three. The experiential design is illustrated in 
section four. Sections five and six describe the methods used for the pricing 
errors and the results achieved. The summary and conclusion are discussed in 
section seven. 

2 Competing models 

In this research, we study the out of sample pricing capabilities of different 
option pricing models. The GARCH option pricing model and the Black-Scholes 
are compared with two types of neural network designs. The first design is the 
common approach using the option price as the target output of the network. The 
second method is to train the neural network directly on the Black-Scholes 
implied volatility and then using the Black-Scholes formula to derive the 
theoretical price. 
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2.1 GARCH Option Pricing Model (GOPM) 

The GARCH Option Pricing Model (GOPM) introduced by Duan [6] is based on 
a discrete-time model of the economy. The value of the index at time t, can be 
assumed to have the following dynamics, 
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Where λ is interpreted as the risk premium. To ensure the variance is positive 
and stationary the following constraints are applied: 

1)1(

0
0
0

2
2

1

2

1

0

<++

≥
≥
>

βλβ

β
β

B
 

     The unconditional variance is given by 
))1(1( 2

2
1

0
βλβ

β
−+−

. This process is 

reduced to the Black-Scholes homoskedastic lognormal process when β1=0 and 
β2 =0. 
     It has been demonstrated by Duan [6] that under the Local Risk Neutral 
Valuation Relationship  (LRNVR) the conditional variance does not change , 
however under measure Q  the conditional expectation of rt is the risk free rate 
rf. 
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     To derive the GOPM, the risk neutral valuation relationship has to be 
generalized to the LRNVR: 
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     By having γλγ +=
~ , the risk-neutral pricing measure is determined by 

four parameters, β0,β1,β2 and
~
γ . Using the above formulation the asset terminal 

is then calculated at time T 
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     The terminal asset price is then calculated using Monte Carlo Simulation. A 
set of N random path of residuals ),...,( *

,
*

,1 jTjt εε + are generated with J = 1 to N. 
The residuals are used to calculate the asset prices ST,j. Using the terminal asset 
price series the option price is then obtained by risk-neutral conditional 
expectation E*: 

[ ])0,max())(exp( ** KSEtTrC TfGARCH −−−=   (7) 
     The final option price is then approximated as follow: 
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     Rather than using standard Monte Carlo simulation, Empirical Martingale 
Simulation (EMS) is adopted. The EMS method has been shown to accelerate 
the convergence of the Monte Carlo prices estimates as demonstrated by  Duan 
and Simonato [9]. 
     The Monte Carlo simulation is give by: 
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and for the EMS, 
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     The delta that corresponds to the GOPM is given by  Duan [6]: 

{ } 







−−=∆ tT

t

TG
t KSI

S
SErtT φ),()(exp       (11) 

Where I(St,X) = 1 is St ≥ K and 0 if S < K.  Since there is no analytical solution 
for G

t∆  the deltas are computed via Monte Carlo simulations. 

2.2 The Black-Scholes option pricing model 

The Black-Scholes theorem was first published in 1971 (Black and Scholes [1]). 
It is most widely used model for pricing model. The model states if S(t) is asset 
price that follows a generalised Wiener Process  

)()()()( tdztSdttStdS σµ +=          (12) 

)(tz is a Brownian motion, the interest rate and volatility are constant. Then a 
call option on the asset, expiring at time T and with strike price K will have 
value at time t: 
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N(x) is the cumulative probability distribution for a standard normally 
distributed variable. The Black-Scholes delta is given by N(d1). Which measures 
the sensitivity to the underlying instrument. 

2.2.1 Implied volatility 
The implied volatility is volatility parameter, which equates the market price 
with the price given by the Black-Scholes formula. The implied volatility, 

( )TKBS
t ,σ  is a function of K (Strike) and T (time to maturity) (Hull [19]). The 

two most interesting features of the volatility surface, which have been studied 
and analysed by researchers, are, the volatility smile (skew) and the term 
structure and the level of implied volatility changes with time. The volatility 
smile is a key indicator of unrealistic assumption of constant volatility. Whereas 
the changes in the implied volatility level with time is seen by the deformation of 
the volatility surface with time. Therefore, the ability to capture the deformation 
of the volatility surface will lead to accurate option pricing. 
     Cont and da Fonseca [20] have expressed mathematically the implied 
volatility surface as follows: 
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     The value of the call option as a function of the volatility is a monotonic 
mapping from [0,+∞[ to ]0,St-Ke-rt[. The implied volatility ( )TKBS

t ,σ  of a call 
option with strike K and price maturity of T is dependent on K and T. If K and T 
are fixed, ( )TKBS

t ,σ  can be generalised to follow a stochastic process. For a fixed 
t the value will depend on the options characteristics such as maturity and strike 
level K. Eqn. (17) represents the volatility surface at time t. 
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where m is the moneyness, ),( τmIt is the implied volatility function  
     The two most important features of this surface are volatility term structure 
(or volatility smile) and the changes in the volatility levels with time. Thus the 
evolution in time of this surface will reflect the evolution of market option 
prices. 

( ) ∫
∞−

−









−=

x

dzzxN
2

exp)2(
2

2
1

π

 © 2008 WIT PressWIT Transactions on Information and Communication Technologies,  Vol 41,
 www.witpress.com, ISSN 1743-3517 (on-line) 

Computational Finance and its Applications III  75



2.3 Artificial neural network (ANN) 

The ANN consists mainly of an input layer, one more hidden layers and an 
output layer. The layers are connected via a set off weights. The hidden layer and 
the output layer consist of individual neurons. The inputs are multiplied by the 
weights and a bias term is added which then constitutes the input to the 
activation function. This is then served as the inputs to the proceeding layer. The 
activation of the output layer is given by, 
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     The activation functions of the neurons could be chosen to be linear or non-
linear functions. A sum of error-squared function is normally used as the 
objective function for the training the MLP. So the MLP is trained to minimize 
this function with respect to the in-sample data. 
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     The MLP performance is dependent on the initial values of the weights.  To 
overcome this issue, the neural network is trained 50 times using different initial 
values for the weights. The weight set that introduces the least error is then 
adopted. 
 

 

Figure 1: Single layer artificial neural network. 

3 The data 

The data used in this research consists of European call options on the FTSE 100 
index traded at the London International Financial and Options Exchange 
(LIFFE). The data obtained in this research was obtained from SIRCA 
(http://www.sirca.org.au/), which covered a two-year period starting from 
2/1/2000 and ends on 31/12/2001. The sample made up of 63,094 call options 
and the daily Index value (adjusted for dividends). 
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     The following constraints were applied to filter the data series, Moneyness 
(Index/Strike) outside [-1.01,0.9], maturity greater 175 days and less than 7 days 
and Close price less than five where removed. The data series was then reduced to 
26533 options. GB Libor rates were used for the risk free rate inputs to the models. 
     The parameters for the GOPM and Black-Scholes were estimated on a daily 
basis. However, when optimising the ANN the data was split into 3 sets: in-
sample, validation and out-of-sample. The in-sample set is used as inputs to the 
ANN thus impacting the weights. The validation set is used to evaluate the error 
at each epoch. The training of the network is terminated when the error of the 
validation increases. The out-of-sampled is data set is used for evaluating the 
ANN model. The hedging analysis was done over 1 month horizon for the month 
of Feburary-2000. 

4 Experimental design 

The aim of this research is to investigate the capability of Neural Networks to 
capture the market volatility dynamics, and hence accurately price call options. 
The competing models are the GOPM; two Neural Networks trained on the 
option price (NNp) and implied volatility (NNiv) respectively. The models are 
then compared based on the out of sample pricing accuracy and the hedging 
performance.  

4.1 GOPM parameters  

The GOPM parameters were estimated for each day of the data sample. This was 
achieved by minimizing the average sum squared error eqn. (21) (Aboura [21], 
Lehnert [22]) over all options on day t, with parameters form day t-1 as the 
initial values (Lehar et al. [23]). 
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    Where 
^
C and C are the model theoretical price and the actual call price 

respectively. The number of Monte Carlo simulation was initially set to 15,000. 
This was sufficient to generate stable estimates. In some case the number of 
simulation had to be increased to 30,000.  

4.2 ANN models and training 

ANN has been applied to many option pricing problems.  Most researchers focus 
on training the ANN to estimate the option price directly (Donaldson and 
Kamstra [24], Meissner and Kawano [13] and Hutchinson et al. [25]). In this 
research, two methods are examined; the first method is commonly used in 
research where the neural network is training on the option price. The second 

 © 2008 WIT PressWIT Transactions on Information and Communication Technologies,  Vol 41,
 www.witpress.com, ISSN 1743-3517 (on-line) 

Computational Finance and its Applications III  77



method the neural network is trained using the Black-Scholes implied volatility 
as the target output. This method is similar to the one adopted by Duan [26]. The 
neural network was optimized by varying the number of inputs, length of in 
sample and validation sets, and the number of hidden unites. The combination 
that gives the lowest error is chosen. The weight values were initialized 
randomly. To eliminate the dependency on the initial weight values this process 
was repeated 50 times.  

4.2.1 ANN with pricing options 
This approach has been widely studied in literature. This approach was also 
followed by  Bennell and Sutcliffe [17].  The input data was partitioned according 
the moneyness of the options in-the money (ITM), at-the-money (ATM) and out-
of-the-money (OTM). For each set, a different network was used. This method has 
been proven to improve the pricing capabilities of the ANN (Yao et al. [15]). The 
in-sample and validation set for ATM and ITM were 168 days and 84 respectively. 
For OTM 64 and 20 days for the in-sample and validation set were used. 
     The homogeneity hint (Merton [27]) is used to simplify the input parameters  
(Garcia and Cirano [28]). The Strike and Index can be combined into a single 
input Index/Strike that is also interpreted as the measure of the option’s 
moneyness. The other inputs used are the option maturity and historical 
volatility. The target set is the Close price/ Strike.  From this point onwards this 
models will be referred to as NNp. 

4.2.2 ANN with implied volatility  
In this paper adopt a new methodology is adopted which will allow the neural 
network to capture the dynamics of the underlying instruments and the changes 
in the volatility levels through time. To achieve the desired effect the neural 
network is trained on the Black-Scholes implied volatility.  In this exercise, the 
data set was not partitioned by moneyness, therefore allowing the neural network 
full visibility of the volatility surface.  This approach is a mapping exercise 
described in eqn. (17). 
     After experimentation with the different inputs, the following combination 
was selected for optimal performance. The in sample and validation set were 20 
and 5 days respectively, and the output sample was 1 day. The inputs used were 
moneyness (index/strike), Time to expiry and historical volatility. The target data 
set was the Black-Scholes implied volatility.  Once the training of the ANN is 
completed, the implied volatility produced by the ANN would be plugged into 
the Black-Schole formula to obtain an analytical price of the option. The same 
concept is applied to generating the delta’s, where the Black-Scholes delta is 
used with the implied volatility produced via the neural network. This model 
would be referred to as NNiv. 

5 Performance measure 

The first measure of the model performance is its ability to price options out of 
sample. However, this measure does not give a clear indication of the models 
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ability to generate profits. Therefore, the hedging performance of the model is a 
much better indication of the models ability to capture the underlying dynamics 
in the market. 

5.1  Pricing accuracy 

To analyze the models performance, Relative Pricing Error (PE) and Absolute 
Relative Pricing Error (APE) were calculated for each model.  
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where 
^
C  and  C  is the model theoretical call price and the actual call price. 

The errors are reported against maturity and Moneyness.  

5.2 Delta hedging 

Most papers consider a hedge portfolio with one unit short in an option, ∆ units 
of the underlying and the rest in a risk free asset (Schittenkopf and Dorffner 
[29]). In this research a hedge portfolio is constructed in a similar fashion to that 
adopted by  Amilon [14] and  Vahamaa [30]. That is we buy that are under 
priced (where theoretical option price is higher then market price) and sell the 
options that are overpriced. For under priced options we construct the following 
portfolio: 
     We by option 00 CV C = and sell index 000 ∆−= IV I  and put the rest in risk-

free asset, CB VIV 0000 −∆= . The portfolio is then replicated as follows: 

tt
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     The value of the portfolio at time T is given by, 
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     Which gives us the absolute hedging error 

TVrt)exp(=ξ       (25) 

Where, I
t

B
t VV ,  and C

tV  are the amount invested in the risk free asset, index 
and call option at time t.  

6 Results 

Below are the estimated mean values of the GOPM parameters. 
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     The risk premium is extracted from the option prices rather than from the 
index time series. It was found to be a little weak which intern will have minor 
impact on the option price. The Annual volatility was found to be approx 22.37% 
which is a close approximation to the historical volatility when estimated on the 
index prices 20.7%. 

Table 1:  GOPM average parameters. 

0β  1β  2β  γ σ  

3.109E-05 1.848E-01 3.184E-01 6.745E-01 22.37%  

Table 2:  Relative pricing errors for all models. 

Time to Maturity 
Moneyness Model LT MT ST TOTAL 

DOTM GOPM 0.021 -0.010 -0.020 -0.009
  NNp -0.062 -0.047 0.837 0.128
  BLACK-SCHOLES -0.098 -0.011 0.038 -0.005
  NNiv 0.034 0.114 -0.024 0.073

OTM GOPM 0.027 -0.007 0.059 0.024
  NNp -0.145 -0.365 0.269 -0.085
  BLACK-SCHOLES -0.497 -0.691 -0.901 -0.762
  NNiv 0.005 0.014 0.024 0.017

ATM GOPM 0.039 0.008 0.030 0.021
  NNp -0.133 -0.083 0.238 0.044
  BLACK-SCHOLES -0.272 -0.240 -0.215 -0.232
  NNiv 0.025 0.004 0.007 0.007

ITM GOPM 0.059 0.013 -0.008 0.007
  NNp 0.063 -0.013 0.142 0.066
  BLACK-SCHOLES -0.165 -0.084 0.002 -0.049
  NNiv 0.040 0.008 -0.019 -0.002

DITM GOPM 0.069 0.059 0.044 0.057
  NNp -0.088 -0.104 0.010 -0.051
  BLACK-SCHOLES -0.098 -0.011 0.038 -0.005
  NNiv 0.075 -0.002 -0.020 0.004

All GOPM 0.045 0.018 0.042 0.030
  NNp -0.109 -0.199 0.350 0.004
  BLACK-SCHOLES -0.584 -0.900 -0.641 -0.767
  NNiv 0.022 0.043 0.009 0.027
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     The performance measures used for all models are relative pricing error 
(RPE) and the absolute relative pricing error (ARPE). A positive or negative 
value of PE indicates overpricing or under pricing of the model respectively. 
Table (2) shows the RPE for all models. On average, the GOPM and the NNiv 
overprice call options, whereas the Black-Scholes and NNp under price the 
options. The NNp tends to over price ST options and under price options in the 
LT and MT range. The GOPM and NNiv have similar behavior where both 
models over price options over all maturities. The BLACK-SCHOLES model 
seems to under prices options over all maturities. In addition, it has the worst 
miss-pricing performance across all maturity and moneyness. 

Table 3:  Absolute relative pricing errors for all models. 

Time to Maturity 
Moneyness Model 

LT MT ST TOTAL 
GOPM 0.179 0.246 0.384 0.267 

NNp 0.590 0.513 1.014 0.625 
BLACK-SCHOLES 0.993 1.815 1.289 1.584 

DOTM 
 
 
 NNiv 0.167 0.269 0.358 0.273 

GOPM 0.105 0.157 0.272 0.202 
NNp 0.519 0.483 0.711 0.580 

BLACK-SCHOLES 0.502 0.713 0.984 0.809 

OTM 
 
 
 

NNiv 0.102 0.154 0.262 0.195 

GOPM 0.078 0.100 0.139 0.116 
NNp 0.263 0.212 0.400 0.295 

BLACK-SCHOLES 0.274 0.262 0.277 0.270 

ATM 
 
 
 

NNiv 0.086 0.094 0.135 0.112 

GOPM 0.082 0.074 0.079 0.077 
NNp 0.154 0.131 0.232 0.181 

BLACK-SCHOLES 0.169 0.120 0.077 0.104 

ITM 
 
 
 

NNiv 0.081 0.071 0.075 0.074 

GOPM 0.039 0.061 0.050 0.053 
NNp 0.160 0.143 0.151 0.149 

BLACK-SCHOLES 0.099 0.074 0.051 0.069 

DITM 
 
 
 

NNiv 0.098 0.066 0.058 0.068 

GOPM 0.121 0.167 0.233 0.188 
NNp 0.491 0.440 0.674 0.528 

BLACK-SCHOLES 0.589 0.924 0.742 0.818 

All 
 
 
 

NNiv 0.119 0.172 0.222 0.185 
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     The GOPM and NNiv models over prices LT options across all moneyness.  
The worst miss pricing performance of the GOPM model has a RPE of 0.069 for 
LT-DITM contracts. This behavior is also seen for NNiv, where the model has 
the worst miss pricing for LT-DITM contracts with a RPE of 0.075. For 
BLACK-SCHOLES model the worst performance for ST-OTM options with a 
RPE of     –0.901 and the NNp has a PE of 0.837 for ST-DOTM contracts. 
     The APE figures are displayed in table (3). On average the performance of 
GOPM and NNiv models increase with maturity. Again, the BLACK-SCHOLES 
model performs the worst on all accounts. On average, the NNiv has a slightly 
better performance than the GOPM. The GOPM model slightly performs better 
for MT contracts and the NNiv has a better performance for ST and LT 
contracts. All models have performed the worst for ST-DOTM contracts. In 
addition, the GOPM performs the best for LT-DITM whereas the NNiv and 
BLACK-SCHOLES are at their best for ST-DITM contracts. The NNiv seem to 
perform best for the MT-ITM contracts. 

Table 4:  Discounted absolute hedging error. 

 Model LT MT ST Total 
NNiv 0.38 19.56 15.66 15.20 

BLACK-
SCHOLES 0.29 19.09 15.74 15.06 ATM 

GOPM 0.41 22.38 16.33 16.56 
NNiv 0.41 23.37 27.47 22.83 

BLACK-
SCHOLES 0.31 21.99 29.65 23.22 ITM 

GOPM 0.42 25.93 30.62 25.39 
NNiv 0.23 9.91 6.70 7.57 

BLACK-
SCHOLES 0.20 9.90 5.89 7.28 OTM 

GOPM 0.30 12.20 6.52 8.72 
Total Nniv 0.33 16.67 17.03 14.90 
Total BLACK-
SCHOLES 0.26 16.11 17.55 14.87 

Total GOPM 0.37 19.18 18.27 16.56 
 
     NNp will be excluded from the hedging analysis due to the unsatisfactory 
performance with the option pricing. The rest of the models are compared over 1 
month horizon, where delta hedging was performed until the option expiry. Then 
absolute hedging error eqn. (25) was used as the benchmark statistic for all 
models. As shown in table (4) the BLACK-SCHOLES and NNiv on average are 
very close with a difference of 0.03.But the NNiv on average performed better 
for the ITM options. The GOPM has the worst performance on all accounts.  For 
ATM-ST and ITM-ST options, the NNiv performed better to the reset of the 
models.  In addition, NNiv seem to get very close to the Black-Scholes. For 
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instance, the OTM-MT option, the BLACK-SCHOLES and NNiv were in fact 
very close with a difference of 0.01. However, the GOPM display far worse 
performance with big differences when compared to the Black-Scholes. The 
NNiv was clearly out performed the GOPM on all accounts expected for OTM-
ST but with a difference of 0.18. 

7 Summary and conclusion 

In this research, a new method for pricing options via neural networks is 
introduced. The neural network was trained using the implied volatility as the 
target output of the neural network rather then the options price. This method has 
shown to improve the out-of-sample pricing performance of the neural network. 
The neural networks performance was also compared to the GOPM and the 
Black-Scholes. The overall performance of the NNiv was slightly better than 
GOPM and much better than the Black-Scholes. The improvement in the neural 
network pricing performance is a result of the neural network ability to capture 
the underlying volatility structure and volatility levels with time. Which is 
apparent in its out of sample pricing abilities. 
     The models were also tested with respect to their hedging performance. The 
GOPM performed the worst. However, the Black-Scholes on averaged 
outperformed the others except for the ITM options where NNiv did better. The 
NNiv did perform better then the Black-Scholes in some categories and in most 
cases was trailing very closely. However, it did outperform the GOPM. There are 
a couple of factors that may have affected the outcome of the results.  Firstly, the 
exclusion of options based on moneyness and maturity could have resulted in the 
loss of significant information. Also, the hedging strategy of keeping the option 
till maturity could skew the results. The method described in  Amilon [14] would 
have been a better option. In addition, the use of the discounted absolute hedging 
error alone does not provide enough statistics to evaluate the model performance.  
     The results presented in this paper are very promising. It has been 
demonstrated the superiority of the neural networks over the GOPM. In addition, 
the ability of the neural network to produce an option price instantaneously 
enables it to be deployed as real time trading tool. An ongoing direction of this 
research is to extend the current findings to train the neural network on the 
Black-Scholes delta rather than using the neural networks implied volatility and 
to examine different types of neural networks such as RBF that may produce 
improved results. 
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