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Abstract 

This paper presents a method for valuation and risk/sensitivity analysis of swing 
contracts with switching and/or recall features.  Standard swing options allow 
natural gas customers to exercise a limited number of call features over a period 
(month) to select the optimal amount of energy to receive each period (day) at a 
given strike price.  More complex versions of these instruments also allow the 
supplier some flexibility.  Two supplier-friendly features are discussed in this 
paper:  (1) Switching features:  the supplier must fulfil the buyer’s nomination in 
full, but has a choice of which commodity/delivery location to supply (2) Recall 
Features:  the supplier may recall some of the buyer’s nomination amount. This 
paper offers an algorithm for backward solution.  The method draws from Jaillet, 
Ronn and Tompaidis (2004, Valuation of commodity based swing options. 
Management Science Vol. 50, Iss. 7, pp. 909–921) by using a forest of trees to 
represent remaining swing rights, but extends it to a two player (customer and 
supplier) setting.  At each stage the players gather the relevant nodes to which 
they can transition and engage in a Stackelberg game to determine the optimal 
action.  At each point, the game’s outcome is determined employing the game 
theoretic concept of subgame perfect Nash equilibrium. Because different 
locations for gas delivery are essentially separate but related markets, the 
underlying prices to be constructed are two gas locations with a specified 
correlation.  This paper employs Rubenstein’s (“Somewhere Over the Rainbow”, 
RISK 4 (November 1991), pp. 63–66; “Return to Oz”, RISK 7 (November 1994), 
pp. 67–71) pyramid methodology for modelling correlated asset price processes.  
In addition, we adapt the Hull and White (1994, Numerical Procedures for 
Implementing Models I: Single Factor Models, Journal of Derivatives Vol 2, pp 
37–48) procedure for incorporating drift so that our price pyramid captures the 
mean reversion feature of natural gas.  Finally we make adjustments so that the 
simulation captures seasonality of natural gas prices. 
Keywords: path-dependent option pricing, correlated trinomial tree, lattice, 
swing options, energy options. 
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1 Introduction 

Commonly used in the natural gas market, swing contracts allow customers 
some flexibility is choosing the delivery time and amount of their gas.  They may 
exercise a limited number of call features to select the optimal amount of energy 
to receive each period. For an ordinary swing, the valuation becomes a backward 
induction problem (with multiple states for number of calls remaining).   
     More complex versions of these instruments also allow the supplier some 
flexibility. Two supplier-friendly features are discussed in this paper:  (1) 
Switching features: the supplier must fulfil the buyer’s nomination in full, but 
has a choice of which commodity/delivery location to supply (2) Recall Features: 
the supplier may recall some of the buyer’s nomination amount.  The first option 
allows the supplier to take benefit from location or commodity price 
differentials. The second feature allows the supplier to act optimally under 
shortages or upward sloping supply curves. 
     This paper provides the highlights of the full methodology and empirical 
analysis of this pricing algorithm as is fully detailed in Persad [5]. 

1.1 The specifics of a swing contract 

A vanilla swing contract specifies a strike price (or index), a contract period T, and 
the length of a subperiod t.  The contract specifies that over this contract period (e.g., 
30 days), the customer must purchase a given amount M of gas by taking delivery of 
up to m on some customer-selected subperiods (e.g. a day).  The number of 
subperiods on which a customer can choose to take deliver is T/t.  In the contracts the 
daily maximum, m, is such that m*T/t > M and m<M.  That is, in order to reach the 
contractual quantity M, the customer must exercise on less that the available number 
of subperiods.  In this manner, his/her choice of which day to exercise becomes non-
trivial.  The customer will have c swing rights where c=M/m. 
     A swing contract with switching feature grants the supplier a fixed number of 
switching rights s, where s is less than or equal to c.  That is, the number of 
switching features is less than the number of swing rights.  Each switching right 
grants the supplier to deliver a substitutable fuel or the same fuel from a different 
pricing location.  For simplicity, we assume that the customer is indifferent 
between the two fuels.  However, the non-trivial Stackelberg game outlined 
below would easily incorporate a distinction between the two fuels from the 
customer’s point of view. 
     A swing contract with recall feature allows the supplier to buy back, at a 
contractually specified price, a certain amount of the daily swing amount if 
nominated.  This is valuable in times of fuel shortages or if the cost of obtaining 
the supply will increase far beyond the specified strike in the swing contract.   

1.2 Previous work 

Previous work on swing contracts have been examined by Joskow [6], Jalliet et 
al [1], Barbieri and Garman [7] , Pilipovic and Wengler [8], and Harrbrucker and 
Kuhn [9]. 
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1.3 Overview of methodology 

The method draws from Jaillet et al [1] by using a forest of trees to represent 
remaining swing rights, but extends it to a two player (customer and supplier) 
setting.  At each stage the players gather the relevant nodes to which they can 
transition and engage in a Stackelberg game to determine the optimal action.  At 
each point, the game’s outcome is determined employing the game theoretic 
concept of subgame perfect Nash equilibrium.   Because different locations for 
gas delivery are essentially separate but related markets, the underlying prices to 
be constructed are two gas locations with a specified correlation.  This paper 
employs Rubenstein’s [2, 3] pyramid methodology for modelling correlated asset 
price processes.  In addition, we adapt the Hull and White [4] procedure for 
incorporating drift so that our price pyramid captures the mean reversion feature 
of natural gas.  Finally we make adjustments so that the simulation captures 
seasonality of natural gas prices. 

2 A correlated process for prices 

Because different locations for gas delivery are essentially separate but related 
markets, the underlying prices to be constructed are two gas locations with a 
specified correlation.  This paper employs Rubenstein’s [2, 3] pyramid 
methodology for modelling correlated asset price processes.  In addition, we 
adapt the Hull and White [4] procedure for incorporating drift so that our price 
pyramid captures the mean reversion feature of natural gas.  Finally we make 
adjustments so that the simulation captures seasonality of natural gas prices. 
     We assume that the price processes are Ornstein Uhlenbeck form with 
correlation rho. 

XXtXXt dWdtXdX σθα +−= )(                         (1) 

YYtYYt dWdtYdY σθα +−= )(                                  (2) 

dtdWdW tt ρ=                                                      (3) 
     To create a lattice, analogous to Rubenstein’s pyramid, but with enough depth 
to capture mean reversion without collapsing the tree, we settle on using a nine 
point transition.  That is, at time from point A in time t, the prices can transition 
to any of the nodes in the diagram below (including staying the same).   
     The pair at each node indicates the movement of prices X and Y, where U 
indicates up, M indicates middle (no move) and D indicates down.  The values at 
each node are given below: 

( ){ }YXDU ∆−−∆= 21,),( ρρ                                   (3) 

{ }YXMU ∆∆= ρ,),(                                             (4) 

( ){ }YXUU ∆−+∆= 21,),( ρρ                                  (5) 

( ){ }YDM ∆−−= 21,0),( ρ                                     (6) 
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{ }0,0),( =MM                                                  (7) 

( ){ }YUM ∆−= 21,0),( ρ                                     (8) 

( ){ }YXDD ∆−+−∆−= 21,),( ρρ                                (9) 

{ }YXMD ∆−∆−= ρ,),(                                       (10) 

( ){ }YXUD ∆−−−∆−= 21,),( ρρ                            (11) 
where 

tX X ∆=∆ 2
3σ                                           (12) 

tY Y ∆=∆ 2
3σ                                            (13) 

     The shape is a parallelogram rather than a square in order to allow  the tree to 
recombine for the changes in the Y price while leaving correlations simple to 
parameterize. The probabilities of moving to each node are denoted by P(xmove, 
ymove).  We have six natural conditions: two expected values, two means, a 
correlation and a requirement that the probabilities sum to one.  The remaining 
three conditions are established to ensure that the tree starts off equally likely to 
move in any direction and to ensure that both prices moving upward is as likely 
as both prices moving downward and that X increasing and Y decreasing is as 
likely as Y decreasing and X decreasing.  This can be changed by the user to suit 
the empirical properties of the underlying prices in question.   
     Now our price simulation looks like a pyramid with today’s change (0,0) at 
the peak.  As we move through time we move toward the base of the pyramid.  
The only distinction is that the pyramid is somewhat skewed as it is the stack of 
smaller parallelograms. At each time step, the size of the parallelogram is (2t+1) 
x (2t  +1) as dy and dx can have arrived at, at most, t-1 downward steps or t-1 
upward steps until time t-1.    Because the tree is recombining, we do not need to 
store the pyramid, but merely the base.  Then we can draw the relevant values at 
each time step by choosing an increasingly larger dimensioned parallelogram. 
     The next step is to incorporate mean reversion.  We follow the method of 
Hull and White [4] who construct a mean reverting process in a trinomial tree.  
They establish three branching patterns and then solve for the probabilities in 
each.  Which branching pattern is relevant is determined by whether or not the 
price has fallen below or risen above thresholds that depend on the mean.   
     In our model we must consider nine branching patterns: (1) the standard 
pattern in figure 1, and the following (2) X is too high, (3) X is too low, (4) Y is 
too high, (5) Y is too low,  (6) X is too high and Y is too low, (7) X is too high 
and Y is too high, (8) X is too low and Y is too low, (9) X is too low and Y is too 
high.  These branching patterns are illustrated in figure 2.  Probabilities are 
solved for using similar conditions to those required in the ordinary branching 
pattern.  In addition we establish threshold values for X and Y so that the 
probabilities do not become negative. The equations can be solved for the 
probabilities explicitly (using for example, Matlab’s symbolic toolbox) or they 
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can be solved numerically.  The full results are provided in an the paper Persad 
[6].   Now our price processes can be envisioned not as a pyramid, but rather as 
an obelisk, also decreasing storage used.    
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Figure 1: Transition pattern. 

D,D D,U

M,U

U,UU,M

M,D M,M

U,D

D,M D,U

M,M M,U

U,UU,M

M,D

D,D

U,D

D,M

U,D

D,U

M,U

U,UU,M

M,D

D,D

M,M

D,M

M,M

D,U

M,UM,M

U,M

M,D

D,D

U,D

D,M

M,D

D,U

M,U

U,UU,M

M,M

D,D

U,D

D,M

M,U

D,U

M,M

U,UU,M

M,D

D,D

U,D

D,M

U,M

D,U

M,U

U,U

M,MM,D

D,D

U,D

D,M D,M D,U

M,U

U,UU,M

M,D

D,D

U,D

M,M

 

Figure 2: Alternative branching patterns. 
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     Finally we would like to perturb the tree in order to take into account the 
current market’s expectation of prices in the future.  In order to do this we adjust 
the obelisk at each time step so that in expectation we reach the forward price.  
This methodology is described in detail in Jaillet, et al [1].  At the end of this 
step, our price process, can be conceptualised as a crooked obelisk that bends 
one way or the other in the shape of the forward curve.   
     In order to assess the reasonableness of our price process, the obelisk is 
traversed for a large number of paths. The calculated probabilities at each time 
step, create a probability density function (and therefore a cumulative 
distribution function).  We can make random draws from a uniform distribution 
to see what our next move should be.  Doing this for the entire number of 
timesteps for a large number of paths will produce several simulations which can 
then be examined to assess whether they possess the desired behaviour.  The 
results are included in the empirical analysis of this methodology, Persad [5].   

3 Valuation methodology 

The method draws from Jaillet et al [1] by using a forest of trees to represent 
remaining swing rights, but extends it to a two player (customer and supplier) 
setting.  At each stage the players gather the relevant nodes to which they can 
transition and engage in a Stackelberg game to determine the optimal action.  At 
each point, the game’s outcome is determined employing the game theoretic 
concept of subgame perfect Nash equilibrium.   
      For the case of ruthless exercise, the maximum daily amount is transacted for 
each swing and substitution.  Two conditions are sufficient for ruthless exercise 
(1) if the customer finds the option in the money, he/she will demand the full 
quantity (demand curve is flat) and (2) in which the supplier can switch fuel but 
offers any amount up to the maximum daily amount, that the customer demands 
(supply curve is flat).  In the case of ruthless exercise, the equilibrium of the 
Stackelberg game reduces to the simple expression: 

( ) ( ) ( )( ){ }, 1 , 1 , 1max 0 , max , 1, , 1, 1
+ + +

+ − − + + − + + +c t s s t c s s t c sU E K X U E E K Y U E E
     (14) 

where Es and Ec denote the number of substitution rights or swing rights used 
and Us,t and Uc,t denote the utility or payoff to the customer or the supplier at 
time t. 
     Some contracts include a recall feature, in which the supplier also has the 
option to provide less than the maximum daily nomination amount.  This 
arrangement is reasonable when the supplier must deal with shortages or, in the 
less extreme case, an upward sloping (as opposed to flat) supply curve.  
Intuitively, the supplier may agree to meet demand to a less than full customer 
request on a given day if the supply for the first lots fuel comes at a lower unit 
price than additional lots.  This would be the situation if there is a regional 
shortage or pipeline disruption. 
     This case allows non-ruthless exercise; the equilibrium may call for 
transacting less than the maximum daily nomination quantity.  The customer and 
the supplier then each influence the other’s decision-making.  The customer may 
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then want to wait to exercise a swing right when it is more certain of being 
fulfilled.  The supplier may want to save a recall right against future possible 
calls. 
     For each decision node, the optimisation problem involves checking three 
state spaces for the next period:  the customer does not call (and the supplier 
does not use his/her recall or substitution right), the customer calls and the 
supplier does not substitute, and the customer calls and the supplier substitutes.  
In this way, the program does not need to hold the entire future state space in 
memory at one time.  Instead it can just call the ones that are necessary. 

4 Results and conclusions 

The pricing results can be compared to a number of limiting cases.  First, we 
know that the swing option with switching grants additional flexibility to the 
supplier.  Since this is a zero-sum game, such flexibility must come at the 
customer’s expense.  Therefore the swing option with recall feature must trade at 
a discount to the standard swing option.  The standard swing option may, in turn, 
be viewed as a basket of American options with the additional constraint that the 
validity (ability to exercise) the option on any given day depends on the number 
of options exercised in the past.  That is, there is a limited number of swing 
rights strictly less than the number of possible periods of exercise.  Therefore the 
standard swing option should trade at a (severe) discount to a basket of American 
options.  Because American options on are traded and publicly priced, we are 
able to compare our results to valid market data.  This comparison is reported in 
the empirical examination of this method as reported in Persad [5]. 
     We can also subject the price methodology to competition.  An alternative 
method of valuation would be to use least-squares Monte Carlo of the type 
proposed by Longstaff and Schwartz [10].  For practical purposes, this method is 
not favored because the state space (number of price paths x number of customer 
swing rights x number of supplier recall rights) is large enough to considerably 
retard computation time.   However, it is a valid computational alternative whose 
merits must also be examined.  These comparisons have been performed and are 
reported in Persad [5]. 
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