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Abstract 

The Libor market model is the standard interest rate model. Yet its application 
relies on Monte Carlo simulation, which is slow, especially in a flexible, 
product-independent model setup. 
     This paper proposes an alternative software design of the Monte Carlo 
simulation to achieve fast and flexible pricing. The design is fast because it 
separates the computation of forward rate paths from that of payoffs to avoid 
redundant calculations; it is flexible because it adapts to new types of payoff 
functions at run-time via on-the-fly compilation. 
     The approach is arbitrarily accurate—it supports a high discretization 
resolution and even full factors without affecting the response time. It also 
features a small-footprint software design that is cheap to maintain and product-
independent. 
Keywords: Libor market model, Monte Carlo simulation, derivative pricing, user 
interface responsiveness. 

1 Introduction 

The Libor market model [1, 7] is the standard interest rate model. Its application 
requires Monte Carlo simulation, and thus some sort of software implementation. 
Ideally, this software should provide fast, accurate results, at low setup and 
maintenance costs, and independent of product types. Yet these are conflicting 
goals. 
     Consider a conventional software implementation of the Libor model, like a 
Euler scheme applied to the logarithm of the forward rates. It provides arbitrarily 
accurate results, and it is straightforward and cheap to set up and to maintain, but 
it will have too slow a response time for traders who need quotes fast. 
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     One way to speed it up is to sacrifice some accuracy. If, for example, a higher 
standard error is acceptable, the number of Monte Carlo runs can be reduced; if a 
low-factor approximation to a correlation structure is acceptable, the number of 
operations per Monte Carlo run can be reduced. 
     Other approaches do not compromise the accuracy, but they increase the size 
and complexity of the software implementation, and thus its setup and 
maintenance costs. One example is to parallelize the implementation, which is 
very suitable for Monte Carlo type models [8], as Monte Carlo simulation is an 
“embarrassingly parallel” computational task. Alternatively, a variety of variance 
reduction techniques can reduce the number of Monte Carlo runs required to 
obtain a desired accuracy [6]. Drift correction, in turn, allows reduction of the 
discretization resolution and thus the number of operations per Monte Carlo run. 
Yet these approaches increase the setup costs: they require additional hardware 
and/or the implementation of additional source code. But more importantly, they 
also increase the dominant maintenance costs: larger and more complex source 
code is more expensive to document, learn, modify, test, port and maintain. (An 
overview of such optimization methods is given in [5].) 
     Finally, there are some product-specific optimizations. For example, some 
financial products only rely on certain rates and fixing dates, which makes jump 
procedures feasible [9]. Such product-specific code—in addition to increasing 
code size and maintenance costs—makes the model implementation unsuitable 
to flexibly adapt to new product types. 
     In short, the goal of a fast and accurate model that is cheap to set up and to 
maintain, and product-independent, is difficult to achieve in a conventional 
Monte Carlo implementation. 
     This paper proposes an alternative software design that overcomes some of 
these limitations. The design specifically tackles two issues: (a) provide a very 
fast response time for model users, and (b) allow for product-independent 
pricing, i.e., process arbitrary, unforeseen payoff function types at run-time. 
     The former is achieved by separating the computational effort of the Monte 
Carlo simulation in two parts: the costly forward rate evolution and the 
elementary payoff aggregation. This avoids redundant computations in the 
typical case where many products have to be priced. 
     The latter issue—adapting to arbitrary new types of payoff functions at run-
time without changes to the software implementation—is addressed with an on-
the-fly compilation of the payoff functions. 
     The approach does not compromise accuracy: in fact, the approach easily 
allows for arbitrarily accurate results (i.e., using millions of Monte Carlo paths, a 
fine-grained discretization, and potentially full factors (Schoenmakers [10], e.g., 
illustrates the disadvantages of low factor models)), without affecting the 
response time. 
     Also, the source code can be implemented in an unoptimized, straightforward 
way, minimizing its size and complexity, and thus reducing its maintenance 
costs. 
     To sum up, the approach achieves arbitrarily accurate pricing with a response 
time of seconds (even when using full factors), with a small-footprint software 
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design that is cheap to maintain and flexible, i.e., not tailored to any specific 
product. 
     However, there are a few drawbacks. The approach does not help with the 
inverse problem of parameter calibration. If products’ tenor dates don’t 
correspond to the model ones, interpolation is required during simulation. The 
approach also increases the setup costs due to the recommended 64-bit computer 
architectures. Finally, intraday calibration might require some degree of 
parallelization, partially offsetting the achieved software size/maintenance cost 
reductions. 

1.1 Implications for practitioners 

The proposed software design for implementing the Libor model has 
implications regarding two main concerns of decision makers: the usability of a 
model, and the costs of creating and maintaining it. First, our approach provides 
fast response times for end users like traders—it is user-friendly. (Note: several 
major financial data providers still refrain from providing the Libor model due to 
the problem of slow response times with traditional Monte Carlo.) Second, our 
approach is cheap: it runs on lean hardware, and requires no expensive 
optimization of the source code. Especially the maintenance costs can be cut, as 
graduate-level software engineers are perfectly able to implement and maintain 
the system; whereas hand-optimized Libor models might well require PhD-level 
mathematicians. 
     Section 2 illustrates the background and the benefits of the proposed approach 
in greater detail. Section 3 describes the implementation details and recommends 
some programming idioms to keep the software design transparent. Section 4 
outlines some drawbacks of the approach. Section 5 concludes and outlines 
possible improvements. 

2 Approach and benefits 

The Libor model describes the arbitrage-free evolution of forward rates. Sticking 
to the notation of Glasserman [6], a (forward measure type) Libor model evolves 
according to 

 
     The numeraire under the forward measure, required for the appropriate 
discounting, is given by 
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     To actually price a product in this model setup using Monte Carlo, numeraire-
adjusted payoff functions must be averaged: 

 
     So there are two parts in Monte Carlo pricing: evolving the forward rates (and 
the numeraire), and aggregating the payoffs. In the typical case where many 
products have to be priced, the first part is redundant and should be computed 
only once. This leads to the following separation: 
1. Evolve and store all forward rate paths. All forward rate paths, as well as 
the corresponding numeraire paths, are pre-computed and stored. This is 
computationally expensive, but it is done only once for every new Libor model 
calibration, or when a new forward rate snapshot has to be used as initial 
condition. 
2. Aggregate payoffs for each product. Given the pre-computed forward rate 
paths, the pricing of products boils down to averaging numeraire-adjusted payoff 
functions of the stored forward rates. This is computationally cheap. 
     Separating the two parts of the computation makes the pricing of individual 
products fast—prices are obtained within seconds. But it has an additional 
advantage: if there is enough time to perform the evolution of the forward rates, 
it is possible to have a high-accuracy model while keeping the corresponding 
software design very simple. It is, e.g., possible to use a high discretization 
resolution, and a large number of Monte Carlo runs. This increases the accuracy 
but will not impact the speed of the pricing step, which accesses the same, just 
more accurately pre-computed, forward rate paths. Also, it is possible to simply 
use a full-factor model as opposed to a reduced-factor one [3] without affecting 
the pricing speed. 
     For all this, a simple software design can be used (object-oriented data 
structures, no obscure and error-prone optimizations, etc.), which greatly reduces 
maintenance costs. Also note, that no product-specific optimizations (like those 
required for jump procedures) take place: all forward rate paths are pre-
computed and stored, making the implementation flexible, i.e., suitable for a vast 
array of product types. 
     Some Libor model implementations we are aware of benefit from this 
possible separation to some extent: they compute several payoffs in a given 
portfolio simultaneously, i.e., using the same paths. This paper extends the 
approach to handle new, unforeseen types of payoff functions or products that 
might emerge during a trading day and need to be priced with a fast response 
time. This is achieved by compiling new payoff functions on-the-fly into an 
executable, and accessing the pre-computed forward rate paths via a shared 
memory architecture. 
     The approach thus consists of the following steps: 
0. Calibrate Libor model (minutes) 
1. Evolve all forward rate paths and store them in shared memory (hours/single 

processor; minutes/multiple processors) 
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2. For each new product: aggregate payoffs (seconds) 
(a) compile the product’s payoff function on-the-fly; 
(b) average numeraire-adjusted payoffs. 

     The following section describes the implementation of this distribution of 
computational workload. Several programming idioms are proposed to provide 
flexibility for new types of payoff functions and products, and to handle the large 
amount of memory required to store and access the pre-computed forward rate 
paths. 

2.1 Evolve and store rates 

The main idea of the proposed approach is to pre-compute and store all forward 
rate paths required for the Monte Carlo simulation. If this has to happen only 
once per day, a single-processor setup is sufficient. Yet in our approach, the 
forward rates must be re-computed not only when a new calibration takes place, 
but also when a new snapshot of initial forward rates—i.e., Li(t = 0)—has to be 
used. This is likely to be necessary several times during a trading day, but a 
modest parallelization would achieve an acceptable performance for this step: a 
(parallelized) server application can (1) pre-compute the forward rate paths 
starting with the current forward rate snapshot; after completion, it will (2) 
designate this set of newly computed forward rates to be the one used for payoff 
aggregation; finally, it will (3) pre-compute the next set of forward rate paths 
based on the updated, most current forward rate snapshot. 
     Calculating the forward rates thus seems feasible. But storing them is less 
trivial. Our approach proposes to store them in main memory, to obtain optimal 
pricing speed. Thus, main memory size becomes the limiting factor. For n Monte 
Carlo runs, and M forward rates, n*(M2+M)/2 values are required to store all 
forward rate paths (note: as rates expire, not every rate has to be tracked over the 
whole simulation period). An additional n*M values are required to hold all 
numeraire paths. 
     In a typical setup (n=107 Monte Carlo runs, and 20 years to simulate, with M 
=40 semi-annual forward rates), 8.6*109 values need to be stored. Each value, if 
stored at double precision, requires 8 bytes, yielding a total of 68.8 gigabytes. In 
the scenario of intra-day updates, twice this memory is required to store both the 
forward rate paths being used for pricing at a given time, and those being 
precomputed from an updated forward rate snapshot (and bound to be used for 
pricing at completion). Unfeasible a few years ago, such an amount of memory 
can nowadays be handled well by 64-bit computer architectures. 

2.2 Aggregate payoffs 

When all forward rate paths are known, pricing a product becomes averaging its 
(numeraire-adjusted) payoffs. One preliminary aspect is how to handle payoff 
functions. 
     There are various ways to handle different product types or payoff function 
types in a Monte Carlo implementation. A common one is a “semi-hardcode” 
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approach: each product type corresponds to some data structure, and users can 
parameterize those structures, e.g., by setting a strike parameter. 
     Another approach is to let users enter a payoff function as a text string, which 
in turn is evaluated by a software interpreter (much like a Basic-type mini-
language). This is more flexible (new product types do not require changes to the 
software implementation of the model), but inefficient. 
     A similarly flexible, but faster alternative is, again, to allow the user to enter 
the payoff function as a text string, but then to compile this string on-the-fly into 
an executable (Examples for software tools that use a similar on-the-fly 
compilation technique are cash flow engines that need to adapt flexibly to a 
variety of cash flow structures.). C++ is the language of choice for this, 
especially because its operator overloading capability makes the payoff function 
look very intuitive. 
     For example, a user could enter the following line to define a specific caplet 
payoff: 

B(0)/B(8)*max(0,delta(7)*(L(7,7)-0.03)) 
     A parser then checks the input for syntax errors, adds code for the Monte 
Carlo loop, and slightly transforms the user input by adding Monte Carlo path 
indices: 

double price = 0.0; 
for (int n=0; n<10000000; n++) { 
price += 
B(n,0)/B(n,8)*max(0,delta(7)*(L(n,7,7)-0.03)); 
} 
price /= 10000000.0; 

     The various elements in the transformed code above are: 
� delta(t): distances between the tenor dates. 
� L(n,j,t): C++ object with overloaded parenthesis operator that accesses the 

precomputed forward rate paths and returns the j-th forward rate at time 
index t in the n-th Monte Carlo run. 

� B(n,t): Another memory access object that accesses the numeraire paths for 
time index t in the n-th Monte Carlo run. 

     The payoff executable—which averages numeraire adjusted payoffs—is then 
executed to obtain the price. Note: the code transformation, the compilation, and 
the execution take place in the background and are invisible to the user, hence it 
is a “runtime” solution. 
     The executable’s speed will mainly depend on the memory access patterns 
within the “L”-object, and on the processor’s cache hierarchy. But even with 
sub-optimal memory access patterns, and with millions of Monte Carlo paths, the 
payoff executable will yield a price within seconds. 

2.2.1 Operator overloading 
To access data structures like arrays in C, the []-operator is used, e.g., DATA 
[2][7]. In C++, objects can be wrapped around the basic data structure to provide 
safe and maintainable code, e.g., DATA.getElement (2,7). More elegantly, C++ 
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allows redefinition of the ()-operator, yielding highly readable code like DATA 
(2,7). 
     There are several reasons to use parenthesis operator overloading: 
� It makes function calls and memory access operations look consistent. 
� The data structure that is accessed is not a conventional n*M*M array, as 

rates only have to be stored up to their fixing date. Access with the standard 
[]-operator would therefore look inelegant, and is best hidden behind the 
parenthesis notation.  

� If the layout of the data structure is modified (e.g., to optimize the number of 
cache misses), it only requires changes within the parenthesis operator, but 
no changes to the operator’s interface. 

� Exception handling inside the operator can be used to signal invalid memory 
access during development. 

� There is no performance penalty, as the parenthesis operator can be 
implemented as an inline function. 

2.2.2 Memory access 
Finally, some remarks about memory access. It is preferable to keep the pre-
computed forward rate paths in main memory all the time to avoid delays when 
loading the data from a hard drive. It is also not advisable to let each payoff 
executable have their own copy of the forward rates, which would waste memory 
and cause disk activity due to virtual memory architectures if several payoff 
executables run at the same time. It is better to store and access only one copy of 
all forward rate paths in main memory, and let the payoff executables access 
them via shared memory constructs. 
     The pricing speed will now mainly depend on the memory access and the 
number of cache misses it causes. It is advisable to store the forward rate paths in 
such a way that the arguments to most products’ payoff functions are stored 
close to each other in memory. If, for example, most payoffs are expected to 
require the 5- and 10-year forward rates, the Monte Carlo instances of these rates 
should be stored in one continuous area of the main memory. 

3 Drawbacks 

The benefits of the proposed approach may not always outweigh the drawbacks: 
� Only the pricing step is fast (this ensures fast response times for users); 

precomputing the forward rate evolutions is—if the model implementation is 
deliberately kept simple to reduce costs—unoptimized and slow. Thus, the 
approach is not helpful for the inverse problem of finding suitable model 
parameters. 

� Some products’ fixing times will not coincide with the model’s tenor 
structure. In that case, interpolation techniques like the geometric Brownian 
bridge (outlined by Brigo and Mercurio [2]) can be used. Other interpolation 
methods are described by Fries [4]. The approach’s acceptance will depend 
on a comparison between interpolating spot rates in the simulation versus 
the conventional approach of interpolating the input data to achieve product-
specific model tenors. 
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� If the model has to be calibrated several times during the trading day, more 
computational resources are needed to pre-compute the forward rate 
evolutions, potentially requiring some parallelization. This can offset some 
of the maintenance cost reductions achieved with the smaller and simpler 
code base. In addition, the proposed 64-bit computer architecture will 
adversely affect the setup costs (we consider those costs to be dominated by 
maintenance costs, though). 

� Access to shared memory is implemented differently on different operating 
systems, which can affect the code’s portability. As the size of these code 
segments is very small, this negative impact is small. 

4 Conclusion 

This paper proposes to separate the computational workload in a typical Libor 
model setting in two parts: an initial stage that pre-computes and stores forward 
rate paths, and a pricing stage, that merely aggregates payoffs to obtain a 
product’s price. It also suggests compilation of payoff functions on-the-fly in 
order to adapt flexibly to unforeseen payoff function types at run-time. 
     This approach is fast for an end-user: product prices are obtained in seconds. 
It is arbitrarily accurate: it is possible to use a large number of Monte Carlo runs, 
a high discretization resolution, and even full factor models without affecting the 
pricing speed. The implementation is cheap to maintain: the software design is 
simple and the code base is small. The implementation is also flexible: a vast 
variety of products can be priced without tailoring the implementation to certain 
product types. 
     The approach, however, does not help with the inverse problem of parameter 
calibration; it is best implemented using 64-bit computer architectures with large 
memory capacity; and the individual products’ tenor structure can require some 
interpolation during the simulation. 
     There is ample space for improvements: choosing a cache efficient storage 
order for the forward rate paths can minimize cache misses and further speed up 
the pricing; accounting for “single instruction, multiple data” (SIMD) commands 
common in modern processors could improve performance; various interpolation 
techniques need to be analyzed to assess the pricing accuracy on dates that do not 
correspond to model tenor dates. 
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