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Abstract 

In this paper the results of multifractal analysis by means of partitions and 
scaling function calculation are described, as well as wavelet analysis, which 
were applied to USA 1987 October Black Monday DJ data. For the partition 
calculation and Legendre transform a special program was elaborated. As our 
aim is predicting crash situations, we are trying to find out the best indicator that 
uses multifractal analysis and wavelet analysis methodology. With this aim in 
mind we have tested different methods of preprocessing the original time series 
to discover the best indicator. The wavelet analysis data were calculated on a 256 
day moving window. The changes in the multifractal analysis features were 
studied while approaching crisis point and after the crisis. From the multiagent 
market model we can observe the crisis evolution and the dynamic of changing 
parameters such as share prices, trading volumes, price increments and statistical 
distribution dependent on traders’ strategies. 
Keywords: stock market, market dynamics, multiagent simulation, wavelet 
analysis. 

1 Introduction 

The prediction of tough crucial changes in the finance market is very difficult 
because of the non-linear structure of the processes. It doesn’t allow us to 
effectively use common statistical methods. Hurst exponent values estimation 
can be used for time series properties determination and for choosing the proper 
method of data processing. Unfortunately in the case of the multifractal time 
series, the Hurst exponent value is not constant and at different time scales takes 
different values, generating a spectrum of values.  
     Multifractal analyses potentially give us the possibility of predicting sharp 
changing market states. In this paper we are making an attempt to apply 
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mathematical theories and methods that are known from the literature [1–7] for 
detection of approaching crises situations at the stock market. Results of the 
experiment on processing real and artificial data by this special program, 
realizing Gibb’s partition method and fractal dimension spectrum estimation, are 
presented in this article. It was also shown that wavelet analysis with 
Daubichies-12 expansion gives another possibility for approaching crises 
detecting.  

2 Methodology 

2.1 Scaling function estimation  

It is known that fixed time scale is inappropriate for analysis of complex 
dynamic systems such as the stock market. For estimating the fractal dimension 
spectrum the partitions method may be used. Let us have time series {xt};             
t ∈ [0,T]. On the interval [0,T], we compute the logarithmic price increment:  

Z ={zt},  zt = ln xt+1 – ln xt  , t=0,...,T                                     (1) 
     We divide interval [0, T] on N subintervals, where N integer, 1 ≤ N ≤ Nmax,  

so that each segment will contain int(
N
T ) = A values of time series Zt. With 

such a partition the total amount of processed readings will be AN. Let us denote 
the segment index K, where 1 ≤ K ≤ N. For each segment let us denote the 
current number of readings lK, running in the range 1 ≤ lK  ≤ A. The 
correspondence between indexes lK  and t is: 

t = (K-1) A+ lK                        (2) 
     In the literature [1–7] an opinion is expressed that the spectrum of the local 
Hölder exponent is widening at the moments, preceding the crash and it’s plot 
widths jump sharply after the crash. So the aim of our research is to discover 
observable distinctions between time series fractal parameters before and after 
the crash point. These differences may be used later as early detectors and 
warnings of stock market crashes. As we are looking for the best possible 
indicators, we will test several methods of preprocessing the original time series. 
We consider the following variants: 

-the original time series itself Z0 = {zt}; 
-the preprocessed time series (accumulated sum at each interval) 
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-the preprocessed time series (subtract the mean and divide by the mean square 
deviation) 
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-the preprocessed time series (subtract mean) 
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     The partition gives us the possibility of representing the time series in 
different time scales, so we take one reading from each interval and in such a 
way we compress the scale. 
     Then we compute one dimensional array for every fixed N and for different 
values q, Qmin ≤ q ≤ Qmax – the scaling function for all four variants: 
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     For all four variants we estimate the local Lipschitz-Hölder exponents 
describing the singularity strength as a two dimensional array for different values 
of q:  

qqqqq
dq

d iii
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/)(/))1()(( ττττα , i = 1, 2, 3, 4.        (11) 

     Carrying out the Legendre transform of scaling function )(qτ  we find 
multifractal singularity spectrum f(α) as the Hausdorff dimensions of the fractal 
subset with Lipshitz-Hӧlder local exponent α:  

)(/)(([)]([minarg)( qqqqqqf ii
i

qi

∧∧
−∆∆≈−= ττταα , i=1,2,3,4  (12) 

     For determining the position of τ (q) plot we use properties τ (0) = -1 and 
τ(

H
1 ) = 0. From another side, τ (q) is a monotonically increasing function. We 

can regard the scaling function as the slope of the partition function in bi-
logarithmic coordinates. In expression (12) the Legendre transform expresses 
reciprocal correspondence between statistic moments and the singularity 
exponent. The width of α spectrum may be estimated as different between the 
maximum and minimum values of α: 

∆α=αmax-αmin                                                                             (13) 
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     Spectrum analysis of the time series interval near the crash events may detect 
the presence of market forecasting signals. Despite the partition method making 
it possible to explicate global stable relations, as we stated, it not sensitive 
enough to fast local changes. This method also demands significant value of 
calculations and elaboration of corresponding software. Wavelet analysis is to 
some extent free from these drawbacks. 

2.1.1 Wavelet analysis of multifractal time series 
Wavelet analysis doesn’t use the assumption of stationary and ergodic properties 
of the time series, and like the partition method wavelet analysis allows us to 
analyze the time series behaviour at different time scales. Due to the 
compactness of the carrier, wavelet analysis can detect short living events at 
short time segments as a trend at long intervals. 
     Wavelet is a function with zero mean and finite energy. Unlike the Fourier 
analysis the wavelet analysis method operates locally in time and doesn’t need 
cycle stationary components. The wavelet transform may be presented as an 
integral expression: 

dtttxW )()(),( ,∫
+∞

∞−

= ατψατ                                        (14) 

where ψτ,α(t) is the function with zero mean centred around zero with time scale 
α and time horizon τ. A family of wavelet vectors is created from the mother 
function by displacement and scaling: 

ψτ,α(t)= )(1
α
τψ

α
−t

                                        (15) 

     The scaling functions re the set of function φk composing the span of 
subspace V0 of space L2(R). So any function f(t)∈ V0.  V0 may be represented as a 
linear combination of scaling functions. Any discrete signal f(t)∈ L2(R) may be 
represented in wavelet function terms: 
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(18) 

 
where jo is a constant, representing the highest level of resolution for which the 
most acute details are extracted.  
     The decomposition process of discrete values segments into averaged or 
approximating values and detail values for different scales are named as 
multiscale or multiresolution analysis. Multiresolution analysis is invariant to 
integer value translations and distortions, which are proportional to the power of 
two. 

dtttf kjkj ∫= )()( ,, ψβ
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     We have performed some experiments on processing real time series using 
multifractal analyses as wavelet analyses.  The method of multifractal analyses, 
described above, has also been applied for the October 1987 USA financial 
crises, using Dow Jones index (Fig. 1). 
     Fig. 2 shows fractal dimension spectrum F2(α ), which have been calculated 
according to (12). 
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Figure 1: Dow Jones industrial average data for period 01.02.1985–
31.12.87. Axis X contains serial numbers of readings. 

 

Figure 2: Fractal dimension spectrum F2 (α) for DJ industrial average series 
for period 10.10.85–19.10.87. 

     Fig. 3 and Fig. 4 show the plots of the multifractal spectrum width changing 
before and after crisis. The plots of different colours correspond to different 
levels of intersection of the fractal dimension spectrum graph and the lines of 
constant values 0, 0.6, 0.8. 
     From these plots we can see that there are peaks, both for the F1(α) and F2(α) 
versions of the multifractal spectrum preceding to the crises point and 
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corresponding to dates 08.10.87 for F1(α) and 07.10.87 for F2, which permit us 
to assert that there are some kinds of predictive signals at least 8 days before 
crises. However, we continued the search of crisis indicators the using wavelet 
analysis method. In our research we choose Daubichies wavelets. Daubichies 
wavelets fit very well for coding of sequences, having intervals of slow changing 
or relatively constant values. From another side, Daubichies wavelets have some 
number of zero moments, which allow one to discriminate thin details. 
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Figure 3: Fractal dimension spectrum width F1 (α) changing before and after 
crises. 
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Figure 4: Fractal dimension spectrum width F2 (α) changing before and after 
crises. 
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     The aim of the experiments was to extract a signal by means of time series 
processing, which could predict the following sharp changes in time series. We 
use Daubichies-12 expansion approximation and detail coefficients for 5 levels. 
We have processed 21 intervals each containing 256 readings from 02.09.86–
29.10.87. For each interval we find the expansion coefficient at all 5 levels. Then 
we take the differences of maximum values from adjusting the intervals. The 
plots of maximum values and their differences are presented in Fig. 5 and Fig. 6.   
     The curve in Fig. 5 has a maximum at point 12.10.87. At the same point in 
Fig. 6 the curve is intersecting axis X. So we can make a conclusion that in both 
cases we obtain some indicators (maxima points) of forthcoming crisis, but these 
indicators are relatively weak. Obviously, this information can be used to detect 
a coming crash. 
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Figure 5: The plot of changing maximum values detail coefficients 
Daubichies -12 expansion. 
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Figure 6: The plot of maximum differences. 

     In order to study how the crisis evolves in time we have made a financial 
market multiagent model, which was partly published in [8]. The choice of initial 
parameters of a virtual market makes sure that the virtual market is a reduced 
copy of an average real market. This in some way guarantees that the virtual 
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market will behave in a similar way to the real market during the experiments. In 
this case, shown in Fig. 7, we used the following parameter values: 
 
MARKET_MAKER_TRADER_COUNT = 2; 
RANDOM_TRADER_COUNT = 0; 
FUNDAMENTAL_TRADER_COUNT = 500; BROKER_COUNT = 5; 
MARKET_COUNT = 1; 
COMPANY_COUNT = 10; 
COMPANY_MAX_ASSETS = 50000000; // 50kk 
COMPANY_MIN_ASSETS = 1000000; // 1kk 
MIN_BROKER_MARKET_ACCOUNT_MONEY = 100000; // 100k. 
MAX_BROKER_MARKET_ACCOUNT_MONEY = 150000; // 300k. 
BROKER_MONEY = 10000; // 10k. 
 
     The experiment is based on the “FundamentalTraders.fms” scenario. Its goal 
is to determine how fundamental traders’ actions can influence share price 
changes. 
     The main goal of fundamental traders in the system is to make the share price 
follow some predefined “want-to-be” price. There are several events in this 
scenario: at first the company increases its assets, then it decreases them very 
quickly, and at the end of this 3-month experiment it again increases them. 
Traders’ fundamental price is directly linked with companies’ assets, so we can 
expect that the market price will be influenced by traders’ expectations and 
somehow be linked to the fundamental l price too. In Fig. 7 we can observe how 
an artificial “crisis” is evolving in time: a period of significant price jumping is 
changed by comparatively modest deviations. 
     In Fig. 8 price distributions are presented. As we can see, share prices 
distribution is very close to distributions on the real markets. Only the average 
price distribution has a rather low peak value. Also the last transaction price has 
a very high peak. It may have been caused by high spread value or a very high  
 

 

Figure 7: Stock market dynamic model. 

 © 2008 WIT PressWIT Transactions on Information and Communication Technologies,  Vol 41,
 www.witpress.com, ISSN 1743-3517 (on-line) 

20  Computational Finance and its Applications III



 

Figure 8: Distribution of share prices in the “FundamentalTraders.fms” 
scenario. 

number of transactions (around 1000). It’s a well known fact – the longer the 
initial array, the higher peak on its distribution. Almost flat distribution of 
fundamental price is an expected result, because it is generated from the 
company’s assets, which change based on a simple algorithm that uses the 
standard Delphi random number generator. 

3 Conclusion 

In spite of positive research results in the detection of forthcoming crash 
situations by means of multifractal as wavelet analysis, there are some 
difficulties in getting appropriate patterns for adjusting the model’s parameters. 
So it seems reasonable to use an agent based market simulation for generating 
artificial data, containing some patterns, which may be further applied for 
improving multifractal and wavelet models.  
     This approach can promote investigation in the domain of forecasting market 
time series by means of supplying necessary data for exploring forecasting 
methods market time series behaviour.      
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