
Macroeconomic time series prediction using
prediction networks and evolutionary
algorithms

P. Forsberg & M. Wahde
Department of Applied Mechanics, Chalmers University of Technology,
Sweden

Abstract

The prediction of macroeconomic time series by means of a form of fully recurrent
neural networks, called discrete-time prediction networks (DTPNs), is considered.
The DTPNs are generated using an evolutionary algorithm, allowing both
structural and parametric modifications of the networks, as well as modifications
in the squashing function of individual neurons.

The results show that the evolved DTPNs achieve better performance on
both training and validation data compared to benchmark prediction methods.
The importance of allowing structural modifications in the evolving networks is
discussed. Finally, a brief investigation of predictability measures is presented.
Key words: time series prediction, recurrent neural networks, evolutionary
algorithms.

1 Introduction

Prediction of time series is an important problem in many fields, including
economics. Due to the high level of noise in macroeconomic time series, models
involving two parts, one deterministic and one stochastic, are often used. One
such method is ARIMA [1]. For one-step prediction, the results obtained by these
simple predictive methods (such as exponential smoothing, which is a special
case of ARIMA models), are difficult to improve much due to the high levels of
noise present. However, even a small improvement can translate into considerable
amounts of money for data sets that concern e.g. an entire national economy.
The aims of this paper is (1) to introduce a class of generalized, recurrent neural

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

Computational Finance and its Applications II 403

doi:10.2495/CF060391

networks and an associated evolutionary optimization method and (2) to apply
such networks to the problem of deterministic prediction of macroeconomic time
series, with the aim of extracting as much information as possible, while keeping
in mind that the noise in the data introduces limits on the achievable performance.

2 Macroeconomic data

Two different data sets were considered, namely US GDP (quarterly variation,
from 1947, first quarter to 2005, second quarter), and the Fed Funds interest rate
(monthly values, from July 1954 to July 2005). The raw GDP and interest data
were first transformed to a relative difference series, using the transformation

ZRD(t) =
Zraw(t) − Zraw(t − 1)

Zraw(t − 1)
. (1)

Next, this series was further transformed using a hyperbolic tangent transformation

Z(t) = tanh(CTHZRD(t)). (2)

For the GDP and interest rate series transformations, the values CTH = 25
and CTH = 5 were used, respectively. The aim of the hyperbolic tangent
transformation was to make the data points as evenly distributed as possible in
the range [−1, 1].

Both data sets were divided into a training part with Mtr data points, and
a validation part with Mval data points. During training, only the results (i.e.
the error) over the training data set were used as feedback to the optimization
procedure (see below). The rescaled GDP data set contained 233 data points. For
training, steps 16-115 were used (Mtr = 100) and for validation, steps 126-
225 were used (Mval = 100). During training, the first 15 steps were used to
initialize the short-term memory of the DTPN. A similar initialization procedure
was applied during validation. For the Fed Funds data set, with 612 data points,
steps 26-475 were used for training (Mtr = 450) and steps 486-605 (Mval = 120)
were used for validation.

3 Methods for prediction

3.1 Discrete-time prediction networks

Neural networks constitute a commonly used blackbox prediction model. In most
cases, feedforward neural networks (FFNNs) are used. In such networks, the
computational elements (neurons) are placed in layers. The input signals (i.e.
earlier, consecutive values of the time series) are distributed to the neurons in the
first layer, and the output signals of those neurons are then computed and used as

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

404 Computational Finance and its Applications II

input in the second layer etc. The output of a given neuron i is computed as

xi(t + 1) = σ

bi +

N∑
j=1

wijyj

 , (3)

where bi is the bias term, wij are the weights connecting neuron j in the preceding
layer to neuron i, N is the number of neurons in the preceding layer, and σ is the
squashing function, usually taken as the logistic function

σ1(z) =
1

1 + e−cz
, (4)

where c is a positive constant, or the hyperbolic tangent

σ2(z) = tanh cz. (5)

Given a set of training data, i.e. a list of input vectors and their corresponding
desired output, such networks can be trained using gradient-based methods, such
as e.g. backpropagation.

However, there are fundamental limitations in the prediction that can be
achieved using FFNNs, due to their lack of dynamic (short-term) memory. Stated
differently, an FFNN will, for a given input, always give the same output,
regardless of any earlier input signals [2, 3]. Thus, such networks are unable to
deal with situations in which identical inputs to the network (at different times
along the time series) require different outputs. Earlier work [2] has shown that
dynamic short-term memory does make a difference in neural network-based time
series prediction.

Furthermore, the requirement that it should be possible to obtain a gradient
of the prediction error, in order to form the derivatives needed for updating the
weights (during training), restricts the shape of the squashing functions. Without
such restrictions, squashing functions such as e.g.

σ3(z) = sgn(z), (6)

and

σ4(z) =

tanh(z + c) if z < −c

0 if −c ≤ z ≤ c

tanh(z − c) if z > c

(7)

could be used.
To overcome the limitations of FFNNs, it is possible to introduce feedback

couplings in the networks, transforming them into recurrent neural networks
(RNNs). Such networks have been used in many financial and macroeconomic
applications, see e.g. [3, 4]. A problem with many standard training techniques
for neural networks is that they require that the user should set the structure of
the network (i.e. the number of neurons and their position in the network), a

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

Computational Finance and its Applications II 405

procedure for which one often has to rely on guesswork and rules-of-thumb [5].
An alternative training procedure is to use an evolutionary algorithm (EA) which,
if properly designed, can handle both structural and parametric optimization [6].

In this paper, a new kind of network (and an associated evolutionary
optimization method), well suited for the problem of time series prediction,
will be used, with dynamical memory, arbitrary structure, and (in principle)
arbitrary squashing functions. Each of the n neurons in these networks which,
henceforth, will be called discrete-time prediction networks or DTPNs for short)
contains arbitrary connections from the nin input elements and from other neurons
(including itself). In addition, each neuron has an evaluation order tag (EOT) such
that, in each time step, the output of the neurons with the lowest EOT values is
computed first, followed by the output of the neurons with the second lowest EOT
values etc. The output neuron, i.e. the neuron with highest EOT (arbitrarily chosen
as neuron 1) is evaluated last. Thus, the equations for neurons with the lowest EOT
become

xi(t + 1) = σ

bi +

nin∑
j=1

win
ij Ij(t) +

n∑
j=1

wijxj(t)

 , (8)

where win
ij are the input weights, wij the interneuron weights, and bi is the bias

term. Ij are the inputs to the network which, in the case of time series prediction,
consist of earlier values of the time series Z(t), i.e. Ij(t) = Z(t − j + 1). The
number of inputs can thus be referred to as the lookback (L) of the DTPN. For
neurons with the second lowest EOT, the equations look the same, except that x(t)
is changed to x(t+1) for neurons with lowest EOT etc. Finally, the output neuron
gives the following output

x1(t + 1) = σ

b1 +

nin∑
j=1

win
1jIj(t) + w11x1(t) +

n∑
j=2

w1jxj(t + 1)

 , (9)

since, at this stage, all neurons except neuron 1 have been updated. It is evident
that the EOTs introduce the equivalent of layers. Thus, while most DTPNs will
contain many recurrent connections, an FFNN is a special case of a DTPN. More
precisely, a DTPN is equivalent to an ordinary FFNN if and only if (1) all squashing
functions are of the same type (either σ1 or σ2), (2) only neurons with the lowest
EOT values receive external input, and (3) wij (i.e. the weight connecting neuron
j to neuron i) is equal to zero if EOT(j) ≥ EOT(i).

3.2 Benchmark predictions

In order to evaluate the results obtained using DTPNs, a comparison will be made
with two standard prediction techniques, namely autoregressive moving average
(ARMA) and exponential smoothing. The general simple ARMA(p, q) model

φ(Λ)Z(t) = θ(Λ)ε(t), (10)

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

406 Computational Finance and its Applications II

Neuron 1 Neuron 2 Neuron n. . .Neuron i

w (interneuron weights) w (input weights)
in

b c k (sigmoid type)

. . .

EOT

Figure 1: A chromosome encoding a DTPN.

where Λ is the lag operator, ε is the disturbance Z − Ẑ, and

φ(Λ) = 1 − φ1Λ − . . . − φpΛp, (11)

and
θ(Λ) = 1 + θ1Λ + . . . + θqΛq, (12)

gives the one-step prediction Ẑ(t + 1|t)

Ẑ(t + 1|t) =
p∑

i=0

φiZ(t − i) +
q∑

i=0

θiε(t − i). (13)

φi and θi are parameters to be estimated in order to find the lowest error.
The exponential smoothing technique (without trend) is described by the
ARIMA(0,1,1) equation

(1 − Λ)Z(t) = (1 − θ1Λ)ε(t). (14)

This model gives the prediction

Ẑ(t + 1|t) =
1 − θ1

1 − θ1Λ
Z(t) = θ1Ẑ(t|t − 1) + (1 − θ1)Z(t). (15)

As a special case, if θ1 = 0, the naive prediction Ẑ(t + 1|t) = Z(t) is obtained.

4 Evolutionary algorithm

The DTPNs were generated using an evolutionary algorithm (EA) [7]. The EA
used here employed a non-standard chromosomal representation, shown in Fig. 1,
in which each gene represented a neuron in the network, encoding its interneuron
weights (wij), input weights (win

ij), bias term (bi), sigmoid parameter (c), sigmoid
type, and EOT. During the formation of new individuals, crossover was only
allowed between individuals containing the same number of neurons. Several
different forms of mutations were used, both parametric mutations modifying the
values of the parameters (including the EOT) listed above, and structural mutations
which could either add or subtract a neuron from the DTPN. No upper limit was set
on the number of neurons. A lower limit of 2 neurons was introduced, however.
In addition to the mutations just listed, a sigmoid type mutation was introduced

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

Computational Finance and its Applications II 407

as well, allowing a neuron to change its sigmoid type by randomly changing the
index k of the sigmoid σk (see Sect. 3.1 and Eq. (17) below). Finally, in order to
allow (not force) the EA to produce sparsely connected networks, some runs were
carried out in which parametric mutations of interneuron weights, input weights,
and biases not only could modify the value of the parameter in question, but also
(with low probability) could set it exactly to zero. Thus, these mutations essentially
functioned as on-off toggles, and were therefore called zero-toggle mutations. The
number of input elements (and therefore the lookback L) was fixed in each run.
The fitness measure F used by the EA was taken as the inverse of the RMS
prediction error over the training set, i.e. F = 1/eRMS where

eRMS =

√√√√ 1
Mtr

Mtr∑
i=1

(
Z(i) − Ẑ(i)

)2

(16)

Note that the use of an EA implies that any form of sigmoid function can be
used in the networks. In addition to the four functions σ1 − σ4, a fifth sigmoid,
namely

σ5(z) =
cz

1 + (cz)2
, (17)

was also allowed in the simulations reported below.

5 Prediction results

A large number of runs were carried out, using different number of inputs
and different EA parameters in order to test the ability of the evolutionary
algorithm to generate DTPNs with low prediction error for the two data sets under
consideration.

The results are summarized in Table 1. The table shows the prediction error for
the DTPN with lowest validation error. In addition, the prediction errors obtained
using naive prediction, exponential smoothing, and ARMA (all with optimized
parameter values), are shown.

As is evident from the table, the best DTPNs outperform the two other prediction
methods. Table 2 gives a more detailed description of the best DTPNs, obtained
with different values of nin. For comparison, note that the best training errors
obtained with exponential smoothing were etr

ES = 0.2512 for the GDP data and
etr
ES = 0.3477 for the Fed funds data. Using the ARMA model, the best training

errors were etr
ARMA = 0.2108 and etr

ARMA = 0.3248, respectively.

6 Predictability measures

The fact that the DTPNs outperform the benchmark prediction methods does
not imply that these networks extract all the available information in the time
series under study. One way of determining whether additional information can be
extracted would be to devise a measure P (t) of predictability such that, in addition

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

408 Computational Finance and its Applications II

Table 1: Minimum errors over the validation part of the data set, obtained using
naive prediction (eN), exponential smoothing (eES), ARMA (eARMA),
and DTPNs (eDTPN). Only the results for the very best DTPN are shown.

Data set eN eES eARMA eDTPN

Fed funds interest rate 0.2018 0.1901 0.1887 0.1837

GDP 0.1771 0.1490 0.1473 0.1305

Table 2: Examples of the performance of evolved DTPNs. The second column
shows the number of inputs to the network, and the third column shows
the probability of a mutation being of the zero-toggle type, i.e. a mutation
that sets the parameter in question to zero. The fourth column shows the
(evolved) number of neurons, and the fifth column shows the (evolved)
number of layers (nL), i.e. the number of distinct EOT values in the
evolved network. The two final columns show the errors over the training
and validation parts of the data set.

Data set nIN Pzero n nL etr
DTPN eval

DTPN

Fed funds, run 1 2 0.00 7 5 0.3072 0.1837

Fed funds, run 2 2 0.25 5 5 0.2968 0.1881

GDP, run 1 5 0.00 4 4 0.2095 0.1423

GDP, run 2 4 0.00 6 4 0.2173 0.1399

GDP, run 3 3 0.00 5 4 0.2131 0.1360

GDP, run 4 3 0.20 11 5 0.2094 0.1305

to the prediction Ẑ(t + 1) of the next value in the time series, one would obtain an
estimate of the error e(t + 1) = Z(t + 1)− Ẑ(t + 1). Ideally, the measure should
be such that P (t) = f(e(t + 1)) where f is a known, monotonous function.

Several different predictability measure can be formed. The amount of (local)
information in a time series can, for instance, be estimated analytically using
random matrix theory, based on the correlation matrix formed from the delay
matrix D [8]. In addition, various empirical measures can also be generated,
based on the prediction errors obtained in previous time steps. An investigation
was made involving both the analytical measure and a few different empirical
measures, applied to the rescaled difference series Z(t). However, in all cases,
the results were negative, i.e. the proposed predictability measure showed near-
zero correlation with the actual prediction error, and therefore these measures will
not be described further here.

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

Computational Finance and its Applications II 409

Figure 2: The best evolved network (run 4) for the prediction of the GDP series.
Input elements are shown as squares and neurons as filled circles. The
neurons are arranged in layers based on their EOT values. For clarity,
only the inputs to one neuron are shown. Solid lines indicate positive
weights and dotted lines negative ones.

7 Discussion and conclusion

This investigation has shown that it is possible to improve, albeit only slightly, the
predictions obtained from standard prediction methods using a generalized version
of neural networks (called discrete-time prediction networks, DTPNs) with the
possibility of adding a short-term memory through feedback couplings.

In earlier work [2], continuous-time recurrent neural networks were considered
for time series prediction. The DTPNs introduced here do not require continuous-
time integration, i.e. the network output is obtained by discrete-time equations
rather than differential equations, making the evaluation of the networks much
faster, while still allowing a rich dynamical structure, including dynamic short-
term memory.

The use of an EA for the optimization of the networks removes all restrictions
regarding both the behavior of individual neurons as well as the structure of the
network as a whole, while still allowing standard feedforward neural networks as
a special case.

The importance of structural modifications in the network is illustrated by
the fact that, in any given run, the structure of the current best network varied
significantly during the run. The final networks often contained rather few neurons
and used only a few input elements, illustrating another advantage of using
recurrent networks: because of their ability to form a short-term dynamic memory,
such networks need not use as many inputs as a feedforward network, thus also
reducing the number of networks weights and hence the risk of overfitting.

The best network for prediction of the GDP series, shown in Fig. 2, had a
slightly more complex structure. However, in the run generating that network,
zero-toggle mutations were used, and indeed the resulting network was far from
fully connected, and therefore had, in fact, a somewhat simpler structure than
would have been suspected on the basis of the number of neurons involved.

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

410 Computational Finance and its Applications II

The fact that the predictability measures all gave negative results was expected,
and it indicates that the DTPNs really do extract all, or almost all, information
available in the time series.

References

[1] Harvey, A., The econometric analysis of time series. London School of
Economics handbooks in economic analysis, New York; London: Philip
Allan, 2nd edition, 1990.

[2] Hulthén, E. & Wahde, M., Improving time series prediction using
evolutionary algorithms for the generation of feedback connections in neural
networks. Proc. of Comp. Finance 2004, 2004.

[3] Giles, C.L., Lawrence, S. & Tsoi, A.C., Noisy time series prediction using
a recurrent neural network and grammatical inference. Machine Learning,
44(1/2), pp. 161-183, 2001.

[4] Tino, P., Schittenkopf, C. & Dorffner, G., Financial volatility trading using
recurrent neural networks. IEEE-NN, 12, pp. 865-874, 2001.

[5] Herbrich, R., Keilbach, M., Graepel, T., Bollmann-Sdorra, P. & Obermayer,
K., Neural networks in economics: Background, applications and new
developments. Advances in Computational Economics, 11, pp. 169-196,
1999.

[6] Yao, X., Evolving artificial neural networks. Proc of the IEEE, 87, pp. 1423-
1447, 1999.

[7] Bäck, T., Fogel, D. & Michalewicz, Z., Handbook of Evolutionary
Computation. Institute of Physics Publishing and Oxford University, 1997.

[8] Ormerud, P., Extracting information from noisy time series data. Technical
report, Volterra Consulting Ltd, 2004.

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

Computational Finance and its Applications II 411

