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Abstract

In this paper we propose a Monte Carlo based approach to Risk Management. Our
approach applies to any system subject to random uncorrelated losses under very
general conditions. Our methodology consists of the following steps: model the
distribution of losses and the distribution of time intervals between losses via an
analysis of historical data; perform a Monte Carlo simulation of a finite period of
time in the future; use the Monte Carlo data to estimate the 99.9% VaR.

1 Introduction

In this paper we present an approach to Risk Management based on the Monte
Carlo technique. The proposed approach is very general and it can be applied to
any system characterized by discrete losses. We have made the following broad
assumptions: a) loss events are independent; b) number of loss events occurring
in any time interval ∆T is independent of loss events occursing before the time
interval considered; c) the probability of two events occurring at exactly same time
is zero.

Discrete losses due to internal fraud (i.e. Operational Risk as defined by Basel
II accord) for a particular department in a Bank provide a good example of
application [1].

Our approach is based on the following steps: 1) model the time distribution and
the severity distribution of losses; 2) simulate possible future scenarios compatible
with the observed time and severity distributions; 3) compute the 99.9% VaR as
the monetary amount that is greater than the total loss in 99.9% of the simulated
scenarios.

Notice that our approach is free from bias or assumptions about the distribution
of the total loss. The validity of the assumptions a), b) and c) can be verified
directly from the data, as we show in the example of section 3.
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In the next section of this paper we present the general approach and provide
examples of distribution functions that can be used to model the time distribution
and the severity distribution of losses.

In the third section we provide an example of application. We build a
hypothetical portfolio of stocks and compute the 99.9% VaR due exclusively to
mini-crashes. In the example we define a mini-crash as the event when all stocks
considered move simultaneously downward. We stress again that our method is
very general and can be applied seamlessly to any portfolio for any quantifiable
definition of crashes [2] (as long as they can be identified as discrete events),
as well as to the analysis of other types of losses (for example Operational Risk
losses).

We want to stress that in the cases examined here, usual analytical formulas for
computing the VaR without performing a simulation does not apply because the
distribution of the total loss over a finite period of time is not Gaussian.

2 Model

Our approach is based on the following assumptions:

a) loss events are independent.
b) the number of loss events occurring in any time interval ∆T is independent of

the number of loss events occurring before the time interval considered;
c) the probability of two events occurring at exactly same time is zero.

The consequence of assumptions a), b) and c) is that we can separately
model the frequency distribution of losses and the severity distribution of losses.
More specifically, assumptions b) and c) indicate that the process underlying the
frequency distribution of losses is a Poisson process.

With the above assumptions, our approach requires the following steps that are
described in detail in the following subsections:

1. Model the time distribution and severity distribution of losses separately;
2. Simulate a large set of possible future scenarios compatible with the

observed time and severity distributions;
3. Compute the 99.9% VaR as the monetary amount that is greater than the

total loss in 99.9% of the simulated scenarios.

2.1 Modeling time and severity distributions

Each loss event is characterized by the time when the event occurs, Ti, and by the
severity of the loss, Si. In the example below we assume Ti is measured in days
and Si is measured in dollars. We also assume that losses are sorted by time so that
Ti < Ti+1. We model the time distribution of {Ti} and {Si} separately.

As consequence of assumptions a), b) and c), the process underlying the
frequency distribution of losses is a Poisson process. This means that the number
of events occurring in any finite time frame T follows the Poisson distribution. It
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also means that the distribution of the time intervals between subsequent losses,
ti = Ti+1 − Ti is exponential

p(t) = λe−λt (1)

where λ is one of the parameter of our model and it equals the average number
of events per unit of time (per day). It can be measured from the data as

λ = (E[t])−1 =

(
1

N − 1

i<N−1∑
i=0

(Ti+1 − Ti)

)−1

(2)

where N is the number of historical loss events.
Modeling the severity distribution is a more difficult task and it depends on

the data set at hand. Some general characteristics are that losses are always
positive and can be arbitrarily large or small, therefore we expect the underlying
distribution to be appreciatively log-normal. In the most general case, consistently
with extreme value theory [3–5], we expect the presence of a fat tail for high
losses, as observed in [1, 6]. A fat tail is characterized by an inverse polynomial
behavior as opposed to an exponential behavior as for a normal or lognormal
distribution. The natural choice for modeling this fat tail is therefore a generalized
Pareto distribution (GPD).

Our approach consists of modeling the severity distribution using the following
distribution function

p(x) = aθ(x − x0)
1
x

e−
(log x−µ)2

2σ2 + abθ(x0 − x)(x + c)−β (3)

which is discussed in detail in Appendix A. This distribution is exactly log-normal
for x < x0, exactly GPD for x > x0, and it is continuous and differentiable
everywhere. It reduces to a log-normal for x0 → ∞ and to a GPD for x0 = 0.
It depends on only four parameters: µ, σ (mean and variance of the log-normal
contribution), x0 (the point where change of behavior is observed), β (the power
of the polynomial behavior of the fat tail). a, b, and c are constants that depend on
the above four parameters and their explicit analytical expressions are reported in
Appendix A.

Fig. (1) shows various plots of p(x) (left) and the corresponding cumulative
distribution functions F (x) (right) in logarithmic scale, for different values of x0,
and fixed values of µ, σ, and β. The greater the value of x0, the smaller the fat tail.

In summary, the parameters of our model are λ, µ, σ, x0, and β. While λ
is measured via eq. (2), the other 4 parameters can be measure via a fit of the
cumulative distribution function implied by historical severity data.

2.2 Simulation

Once the model parameters are extracted from historical data, we proceed by
performing a simulation of multiple future scenarios. Each simulated scenario
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Figure 1: Log-plot of p(x) (left) and F (x) =
∫ x

−∞ p(x)dx (right) for different
values of β = 1.5, 2, 2.5 at µ = 0, σ = 1, and z0 = 1 fixed, compared
with a Gaussian distribution.

covers a finite time interval from 0 (today) until some future time T . This is the
time over which we wish to compute the Value-at-Risk. Each simulated scenario is
characterized by a set of simulated loss events occurring within the time interval T .

The simulation of each simulated scenario starts at time 0 and recursively
proceeds to simulate the next loss event. The next loss event will occur in time t
and will have a severity s. t and s are random numbers generated according to the
frequency distribution and the severity distribution respectively. The simulation of
each scenario proceeds until a loss event occurs beyond the time interval T being
considered.

Multiple scenarios are simulated using the method described above. Then,
for each simulated scenario k, we compute the total loss Lk by summing the
discounted s losses occurring under scenario k within the considered time interval.

2.3 Computing the VaR

The 99.9% Value-at-Risk is defined as the value such that the probability of losing
more than its value is 0.1%. Since our simulated scenarios are generated using the
same procedure, they all occur with equal probability 1/m, where m is the number
of simulated scenarios. The 99.9% VaR can therefore be determined as that value
that is greater than the total loss Lk in 99.9% of the simulated scenarios, and less
the total loss in the remaining 0.1% of the simulated scenarios. This computation
is done by sorting the scenarios according to their total loss Lk so that Lk+1 > Lk

and choosing (the notation �x� indicates excess rounding of x)

99.9% VaR = L�0.999m�

The same argument applies to the computation of the VaR for any other percentile.
The larger is the number of simulated scenarios m, the more precise is the
determination of the VaR.

Notice how, in general, the usual formula to compute the VaR in terms of the
standard deviation of the losses does not apply. In particular that formula does not
apply if the distribution of the total loss is not Gaussian. Fig. (2) shows that this is
clearly not the case for the systems under consideration in this paper.
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Figure 2: Loss events associated to the mini-crashes (all stocks moving downward)
of our sample portfolio during the time frame March 16, 2001 - February
21, 2006.

3 Example

In this section, as an example application of our approach, we consider the
computation of VaR due to mini-crashes in a portfolio of stocks. This number
represents the economic capital that one would have to save to provide insurance
against such events at 99.9% confidence level. We define a mini-crash as the event
when all the stocks considered move simultaneously downward.

In order to provide a concrete case we consider a portfolio comprised of the
following stocks:

MSFT, RTN, HCA, EP, AVP, HNZ, USB, GD

with a constant capital of $100,000 invested in each of them.
The above set of stocks have been chosen because of their relative low

correlation. If the stocks where uncorrected, the probability of all of them moving
downward (a mini-crash) in one day would be about 0.4%. Our analysis of
historical market data indicates that this occurred 159 times in the time period
starting March 16, 1992 and ending February 21, 2006, which averages to
approximately once every 31 calendar days, or once every 21 trading days. This
corresponds to a mini-crash probability of 5%, ten times more likely than the naive
expectation.

Fig. 2 shows past losses associated with our portfolio in the time frame
considered.

Fig. 3 shows the distribution of time intervals between two consecutive past
losses, superimposed with the exponential distribution using the value λ = 1/31
extracted from the data. The plot indicates that the probability of two consecutive
mini-crashes occurring in two consecutive days is more likely than predicted by
the exponential distribution. This is a small deviation from the assumption and
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Figure 3: Distribution of time intervals between two consecutive past losses,
superimposed to the exponential distribution at λ = 1/31.

Figure 4: Log-plot of the cumulative distribution function F (x) for the severity of
historical losses, and best fit using the distribution in eq. (3).

therefore it will be ignored in the rest of the paper, although it could be taken into
account by correcting the frequency distribution.

Fig. 4 shows, in logarithmic scale, the cumulative distribution function for the
severity of historical losses and its best fit using the distribution in eq. (3).

Fig. 5 shows the total loss for each simulated scenario for m = 10000
simulations. The simulated scenarios are sorted according to their total loss. The
99.9% VaR reads directly from this plot as the y-axis value corresponding to the
x-axis value �0.999m� = 9990.

Other VaR percentiles can be calculated in a similar fashion.
Our result is 99.9% VaR = $360, 000. This is 45% of the total funds invested

in the portfolio. (The number exceeds the regular 99.9% VaR associated with the
portfolio because it only consider events when all stocks jump downward. In fact,
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Figure 5: Total loss of each of the 10000 simulated scenarios. The 99.9% VaR
reads directly from this plot as the y-axis value corresponding to the
x-axis value �0.999m� = 9990.

in the example considered, positive jumps offset most of the risk discussed in this
paper. Our approach allows us to isolate the risk associate to this specific type of
discrete event.)

4 Conclusion

In this paper we present a Monte Carlo approach to the computation of Value-at-
Risk for systems subject to discrete losses. The main ingredients of our approach
are that it model the frequency distribution of losses as a Poisson process and
the severity distribution of losses using the novel fat-tail distribution discussed
in this paper. The VaR is computed by performing a Monte Carlo simulation
of future losses and sorting these scenarios according to their relative total loss.
This procedure is very general and does not require any assumption about the
distribution of the total loss.

In this paper, as an example, we have applied our technique to the computation
of the VaR due to mini-crashes of a given stock portfolio.
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Appendix A: Combined Log-normal + Pareto distribution

The particular distribution utilized in this paper to model the severity of losses has
the following form
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p(x) = aθ(x − x0)
1
x

e−
(log x−µ)2

2σ2 + abθ(x0 − x)(x + c)−β (4)

This distribution is exactly log-normal for x < x0, exactly Pareto for x > x0,
and it is continuous and differentiable everywhere, including x = x0.

µ, σ, x0 and β are free parameters, while a, b and c are coefficients that depend
on those parameters via the following exact relations:

a =
(√

π

2
σ

(
1 + erf(

log x0 − µ√
2σ

)
)

+
b

β − 1
(x0 + c)1−β

)−1

(5)

b =
(x0 + c)β

x0
e−

(log x0−µ)2

2σ2 (6)

c =
x0βσ2

σ2 + log x0 − µ
− x0 (7)

where we defined

erfz =
2√
π

∫ z

0

e−t2dt (8)

Appendix B: Statistics about the sample portfolio

Average daily log-return and daily volatility in the time period starting March 16,
1992 and ending February 21, 2006.

MSFT RTN HCA EP AVP HNZ USB GD

µ/100 7.2% 1.6% 3.8% 3.1% 6.3% 3.6% 5.6% 11.4%
σ 2.2% 2.1% 2.2% 2.0% 2.0% 1.4% 1.9% 1.8%

Average correlation of daily log-returns in the same period.

MSFT RTN HCA EP AVP HNZ USB GD

MSFT - 8% 13% 13% 10% 12% 24% 16%
RTN 8% - 13% 10% 14% 13% 17% 29%
HCA 13% 13% - 9% 17% 18% 21% 14%
EP 13% 10% 9% - 7% 12% 15% 12%
AVP 10% 14% 17% 7% - 24% 20% 14%
HNZ 12% 13% 18% 12% 24% - 22% 14%
USB 24% 17% 21% 15% 20% 22% - 17%
GD 16% 29% 14% 12% 14% 14% 17% -
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