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Abstract 

Previous research in portfolio optimisation has incorporated some real-world 
aspects but, to the best of our knowledge, none has incorporated all of them in a 
model applicable to actual real-world portfolios.  
     We therefore develop a realistic model, investigate the efficiency of its 
solution by two heuristic methods, genetic algorithms and tabu search, and then 
examine the insights provided by the optimisation of real portfolios. 
     Our model is based on the classical mean-variance approach, enhanced with 
floor and ceiling constraints, cardinality constraints and nonlinear transaction 
costs that include a substantial illiquidity premium, and is applied to a large 100-
stock portfolio.  
     We find that for large portfolios the performance of genetic algorithms is 
three orders of magnitude better than that of tabu search.  
     The results confirm that both floor and ceiling constraints have a substantial 
negative impact on real portfolio performance. Optimal portfolios with nonlinear 
costs and cardinality constraints often contain a large number of stocks with very 
low weightings. Their function is to diversify risk, and floor constraints hamper 
this, damaging portfolio performance. In addition, nonlinear transaction costs 
that are comparable in magnitude to forecast returns tend to diversify portfolios 
materially.  
Keywords: portfolio optimisation, efficient frontier, heuristic, genetic algorithm, 
tabu search. 

1 Introduction 

While the basis for portfolio optimisation was established by Markowitz [1] in a 
seminal paper over 50 years ago, it is often difficult to incorporate real-world 
constraints into the classical theory. In practical portfolio construction there are 
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floor and ceiling constraints. In addition, the impact of transaction costs on 
performance can be large. These costs are variable and there is also an additional 
“liquidity premium” that drives up the cost for large transactions in illiquid 
stocks. This premium is strongly nonlinear and can be up to two orders of 
magnitude larger than the base costs. Combined with cardinality constraints this 
results in a mixed integer nonlinear programming problem that classical 
algorithms are unable to optimise efficiently. 

2 Related work 

Mulvey [2] approximated a transaction cost function by a piecewise linear 
convex function. Zenios and Kang [3] applied a linear programming model, 
using mean-absolute deviation (MAD) as the risk function, to a mortgage-backed 
securities portfolio. Konno and Wijayanayake [4] use a branch-and-bound 
algorithm to solve the MAD optimisation model for a concave cost function. 
Loraschi et al. [5] presented a distributed genetic algorithm for the unconstrained 
portfolio optimisation problem, while Crama and Schyns [6] developed a model 
incorporating many types of constraints but costs were ignored. The algorithms 
of Bienstock [7] exploit the fact that the objective function is quadratic and that 
the covariance matrix is of low rank, while Borchers and Mitchell [8] use an 
interior point nonlinear method. Mansini and Speranza [9] used a MAD 
approach and considered floor constraints. Chang et al. [10] constructed a 
cardinality-constrained Markowitz model incorporating floor and ceiling 
constraints that was solved using genetic algorithms, simulated annealing and 
tabu search, but costs were not addressed. Tabu search was applied by Glover et 
al. [11] to a portfolio optimisation problem. Lobo et al. [12] described an 
approximate method incorporating ceiling constraints, risk constraints and costs. 
Only linear and fixed transaction costs were used, and cardinality constraints 
were not incorporated.  

3 The real-world model 

The unconstrained Markowitz model is as follows. If: 
N   = the number of assets in the investable universe 
Ri  = the expected return of asset i (i = 1 ... N) above the risk-free rate rf 
σij = the covariance between assets i and j (i = 1 ... N,  j = 1 ... N) 
xi  = the fractional weight in the portfolio of asset i (i = 1 ... N) 
w  = the risk-aversion parameter (0 ≤ w ≤ 1) 
then the problem becomes: 

maximise  (1-w) ∑
=

N

i 1

Rixi  – w ∑
=

N

i 1
∑

=

N

j 1

σijxixj    

subject to         ∑
=

N

i 1

xi  = 1 

               0 ≤ xi ≤ 1   i = 1, … N 

(1)
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     Solving the quadratic programming equation (1) for various values of w 
results in combinations of portfolio return and variance that map the efficient 
frontier. This curve represents the set of Pareto-optimal or non-dominated 
portfolios. Our real-world extensions to the above model are as follows. 

3.1 Floor and ceiling constraints 

If li = the minimum weighting that can be held of asset i (i = 1 … N)  
   ui = the maximum weighting that can be held of asset i (i = 1 … N)  
then the constraint is simply formulated as 

  li ≤ xi ≤ ui              (2) 
where     0 ≤ li ≤ ui ≤ 1 (i = 1 … N) 

3.2 The cost function 

The conceptual shape of the transaction cost function is shown in figure 1, where 
units can refer to either number of stocks or transaction size in monetary units. 
     Our model is restricted to the high end of the cost curve, as this is the region 
relevant to institutional investors. If: 
m = marketable securities tax (MST) rate 
f  = a fixed charge component 
v = value-added tax (VAT) rate 
b = brokerage rate 
s  = transaction value 
p = the illiquidity premium (a function) 
c’ = total unit transaction cost 
C = total transaction cost 
then the total transaction cost is given by  

         C = (1 + v) f + [(1 + v)(b + p) + m]s            (3) 
and the total unit transaction cost is 

  c’ = C/s = (1 + v) f/s + [(1 + v)(b + p) + m]            (4) 
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 Figure 1: Illustrative transaction

cost functions. 
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surface. 
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     The illiquidity premium is mainly a function of transaction size relative to the 
stocks’ tradability. The illiquidity premium is therefore given by a function of 
s/t, where t = stock tradability (average value traded on the market per time 
period). Our estimates of the illiquidity premium p are fitted empirically with a 
two-term exponential function of the form 

  p(s/t) = a[1- ke-{(k-1)/k} d (s/t) + (k-1)e-d (s/t)]            (5) 
using the three parameters a, k and d. 
     The resulting set of curves of the illiquidity premium for various values of t is 
shown in figure 2. As stock tradability increases the cost curve declines and also 
becomes more linear. 

3.3 Cardinality constraint 

Let           zi  = 1    if any amount of asset i (i = 1, …N) is held 
           zi  = 0    otherwise 
           K  = the maximum number of assets allowed in the portfolio  
Then the cardinality constraint becomes 

      ∑
=

N

i 1

zi = K              (6) 

where K ≤ N and  zi∈ [0,1] is the integrality constraint. 

4 Solving the real-world model 

4.1 The heuristic approach 

Heuristic solution methods are approximate algorithms that are applied to 
intractable problems and ensure ever-improving solutions that will result in 
“acceptable” answers. Examples of heuristic algorithms include simulated 
annealing, tabu search and genetic algorithms. Since it is difficult to find 
commercial software for simulated annealing, we test tabu and genetic 
algorithms on the problem. 

4.2 Cardinality-unconstrained case 

The cardinality-unconstrained case is first examined to establish the impact of 
the real-world features of this model. A small portfolio of 10 stocks is sufficient 
for this purpose and is easily optimised with a simple solver. The 10 largest 
stocks by market capitalisation are used in this analysis, with a floor constraint of 
2% and ceiling constraint of 15%. 

4.2.1 Effect of floor and ceiling constraints 
The effect of floor and ceiling constraints on the efficient frontier is shown in 
figure 3. Risk is shown as the standard deviation returns. Floor constraints force 
an exposure to every stock, including those with poor returns, thus reducing the 
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portfolio’s return. For low levels of risk aversion, the portfolio will normally 
tend to consist of only one or two stocks, i.e. those with the highest returns. 
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     The ceiling constraint, however, will make this high level of optimal exposure 
to these stocks impossible, and again force an exposure to lower-return stocks,  
which will reduce the portfolio’s return.  
     The lowest-risk constrained portfolio has a higher volatility than that of the 
unconstrained portfolio, since the constraints also interfere with the optimal 
weights for risk reduction.  

4.2.2 Effect of nonlinear costs 
The impact of nonlinear costs on the portfolio, without any floor or ceiling 
constraints, is shown in figure 4. 
     Without costs, the highest-returning portfolio again consists only of one 
stock. However, the large size of the transaction results in a high transaction cost 
since costs increase exponentially with transaction size because of the illiquidity 
premium. If this cost is of a magnitude comparable to the forecast returns, the 
portfolio tends to diversify into more stocks in order to reduce total transaction 
costs and their adverse impact on returns.  
     Therefore, realistic nonlinear transaction costs tend to diversify portfolios. 

4.2.3 Combined effect of floor and ceiling constraints and nonlinear costs 
The impact on the portfolio of floor and ceiling constraints together with 
nonlinear costs is shown in figure 5. 
     The negative impact on the constrained and cost-laden portfolio is 
cumulative. The characteristics of the three realistically-constrained frontiers are 
summarised in table 1. 
     Risk for the highest-return portfolio is reduced by the introduction of 
constraints and nonlinear costs, since they diversify the portfolio. However, for 
the lowest-risk portfolio, floor and ceiling constraints will increase risk since 
they force exposure to higher-risk stocks. An interesting result is that this may in 
some cases also be accompanied by a corresponding increase in return. The 

Figure 4: Effect of costs (no 
floor and ceiling 
constraints). 

Figure 3: Effect of floor and
ceiling constraints (no
costs). 
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impact of nonlinear costs on risk is thus ambiguous, depending on the degree of 
diversification required for cost reduction. The number of stocks in the portfolio 
invariably increases as a result of constraints (trivially), nonlinear costs and their 
combined effect. 
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Table 1:  Summary of constraint and cost effects. 
 

 Model Portfolio  Highest-
return 

Lowest-
risk 

   portfolio portfolio 
 No constraints Return (%) 26.50 18.18 
 Risk (frac) 0.328 0.290 
  Stocks no. 1 8 
 With floor and ceiling constraints Return (%) 21.78 18.53 
 Risk (frac) 0.308 0.292 
  Stocks no. 10 10 
 With nonlinear costs Return (%) 21.24 16.16 
 Risk (frac) 0.316 0.290 
  Stocks no. 6 9 
With floor and ceiling constraints  Return (%) 20.24 17.07 
and nonlinear costs Risk (frac) 0.308 0.292 
 Stocks no. 10 10 
Difference between all constraints  Return (%) -6.26 -1.11 
and no constraints Risk (frac) -0.020 0.002 
  Stocks no. 9 2 

 

4.3 Cardinality-constrained case 

4.3.1 Testing the heuristic methods 
The incorporation of cardinality constraints is essential in any realistic portfolio 
optimisation. 
     For the real-world cardinality-constrained, large 100-stock portfolio with both 
floor and ceiling constraints and nonlinear costs which we now consider, there is 

Figure 6: Heuristic-derived 100-stock
cardinality-unconstrained 
frontier. 

Figure 5: Combined effect of
constraints and costs. 
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no classical method of calculating the exact efficient frontier because of the size 
and nonlinearity of the problem, and hence no way of benchmarking the heuristic 
methods against the exact solution. Therefore, to test initially the effectiveness of 
the heuristic methods and establish their suitability, they are first used to find the 
efficient frontier without the cardinality constraints. 

4.3.2 Evaluating the heuristics on the cardinality-unconstrained case 
The efficient frontiers generated by the two heuristic methods for the cardinality-
unconstrained but large 100-stock portfolio with floor/ceiling constraints and 
nonlinear costs are shown in figure 6. 
     The comparative results of genetic algorithms (GA) and tabu search (TS) are 
summarised in table 2. The closeness of the calculated frontier to the exact 
frontier is measured by the arithmetic average of the absolute percentage 
differences in both return and risk. Solution times are for a 2.8 GHz computer. 

Table 2:  Performance of heuristics. 

Return Risk Objective 
function 

Solution 
time 

Best 
trial 

Total 
trials Absolute 

difference in: (%) (%) (%) (min) (no.) (no.) 
Median 3.30 0.54 8.56 30 371 723 
Standard 
deviation 2.06 0.46 20.62 3 271 175 

Mean 3.06 0.73 16.48 29 379 736 TS 

Combined 
mean 1.89 - - - - 

Median 0.36 0.24 0.07 4 14 819 14 819 
Standard 
deviation 0.95 0.62 0.09 4 10 656 10 656 

Mean 0.85 0.51 0.08 5 18 419 18 419 GA 

Combined 
mean 0.68 - - - - 

 
     While tabu search works well on small (around 20-stock) problems, its rate of 
convergence to the solution slows significantly when the problem size increases 
towards 100 stocks. A stopping rule of 30 minutes is therefore implemented.  
     A simple efficiency measure is provided by combining absolute accuracy and 
time by using their product as the criterion. Figure 7 shows both methods’ 
performance across the frontier for various values of w. 
     Based on this measure, the performance of the genetic algorithm is better than 
that of tabu search by approximately three orders of magnitude and is able to 
find solutions arbitrarily close to the correct value, with calculation times of 
around 5 minutes. 
     Interestingly, both methods find the centre portion of the efficient frontier the 
most difficult to generate. A possible reason is that at the upper end (highest 
returns, low risk aversion, w ⇒ 0), the selection of the highest-return stocks is 
relatively straightforward, and at the lower end (lowest risk, high risk-aversion, 
w ⇒ 1) the optimisation strategy is also simple: select the lowest-risk stocks. 
However, in the central part of the frontier there is a much larger number of 
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combinations of stocks that will result in middle-of-the-road return and risk 
levels. 
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     Since the efficient frontier found by the heuristic methods consists of 
suboptimal points, the optimal portfolios generated for the cardinality-
constrained case will always be conservative in terms of displaying returns per 
unit of risk that are lower than their true values. 

4.3.3 Application to the cardinality-constrained case 
In the cardinality-constrained case the floor constraint is subsumed into the 
cardinality count, i.e. if xi > li then zi = 1, otherwise it is zero. The ceiling of 15% 
is retained. A cardinality constraint of 40 stocks within the 100-stock universe is 
selected. 
     The introduction of cardinality constraints may result in a discontinuous 
efficient frontier, as shown by Chang et al [10]. The efficient frontier for 40 
stocks is shown in figure 8. There are no signs of any discontinuities in this 
particular cardinality-constrained efficient frontier.  
     The cardinality-constrained portfolio completely dominates the cardinality-
unconstrained portfolio. On average, for the same level of return the cardinality-
constrained frontier exhibits risk that is lower by between 5% and 12%. 
Conversely, for equal risk levels, the cardinality-constrained portfolio produces 
returns that are 24% to 30% higher across the efficient frontier.  
     The next step in optimising real-world portfolios is to determine the risk-
aversion factor w. This can be estimated from the original Markowitz theory, i.e. 
by drawing the capital market line from the point representing risk-free T-bills to 
the efficient frontier and noting the value of w at the point of tangency.  
     Using this value of w, optimal 40-stock portfolios are then generated from the 
100-stock universe. Their characteristics are compared with those of the universe 
in table 3, which also shows the effect of changing the floor constraint from 
0.5% to 2%. Since the higher floor constraint shifts the frontier, a different value 
of w arises. 
 

Figure 8: Cardinality-constrained 
efficient frontier. 

Figure 7: Efficiency of heuristic
methods. 
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Table 3:  Optimal portfolio characteristics. 

  Weight Total Excess return Risk 
  range costs  less costs (beta) 
  xi C(x) Ri  
  (frac) (%) (%) (x) 

100-stock universe 
Maximum return 0.150 1.72 146.5 1.81 
Equally-weighted 0.010 0.29 40.2 1.11 
Minimum risk 0.000 0.00 -10.4 0.26 
Optimal portfolio - 0.60 39.9 1.11 

40-stock optimal portfolios 
Parameters:   Floor = 0.005 w = 0.996 
Maximum return 0.150 1.72 146.5 1.61 
Equally-weighted 0.025 0.73 59.5 1.00 
Minimum risk 0.005 0.59 17.5 0.26 
Optimal portfolio - 1.28 83.5 0.89 
Parameters:   Floor = 0.020 w = 0.998 
Maximum return 0.150 1.72 146.8 1.61 
Equally-weighted 0.025 0.65 56.5 0.99 
Minimum risk 0.020 0.62 -4.6 0.26 
Optimal portfolio - 0.79 60.1 0.90 

 
     The substantially better performance of the 40-stock cardinality-constrained 
portfolios in terms of providing substantially higher returns at lower risk is 
readily apparent. The optimal portfolios generated usually consists of relatively 
few stocks with high weights that are at, or close to, the ceiling constraint, a 
larger but still relatively small number of medium weightings and a long tail 
consisting of many stocks at, or close to, the floor constraint. In terms of the 
number of stocks, this tail can be around 70%-80% of the portfolio. What 
happens is that the highest weightings are usually allocated to stocks with high 
forecast returns. However, these stocks normally also have above-average risk, 
which raises the portfolio’s risk level. This risk is then diversified away by the 
large number of stocks with very low weightings. 

5 Conclusions 

We have shown that realistically large portfolios, incorporating floor and ceiling 
constraints, nonlinear transaction costs including a substantial illiquidity 
premium, together with cardinality constraints, can be optimised in reasonably 
short times using genetic algorithms.  
     It should be noted that the addition of embellishments to the model, such as 
setting individual floor and ceiling constraints for each stock; applying other 
constraints such as market capitalisation or tradability, as well as class, sector or 
style constraints; providing individual cost curves for individual stocks; setting 
the cardinality constraint as a range and constructing more complex objective 
functions and cost curves (which could incorporate step functions or even be 
discontinuous) will be equally easily handled by this approach. 
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