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Abstract 

The beta parameter is used in finance to estimate systematic risk and usually it is 
assumed to be time invariant. The literature shows that there is now considerable 
evidence that beta risk is not constant over time. The aim of this paper is the 
estimation of time-varying Italian industry parameter betas using a new approach 
based on the Kalman filter technique and on polynomial estimates. This 
approach is applied to returns of the Italian market over the period 1991-2001. 
Keywords:   time-varying beta, additive non-Gaussian noise, Kalman filter. 

1 Introduction  

The market effect on the returns of single assets is one of the most investigated 
arguments in finance. The Capital Asset Pricing Model (CAPM) suggests that 
the market effect is due to the relationship between the asset returns and the 
market portfolio returns. Moreover, the asset sensibility to the variations of the 
market portfolio returns produces the single asset expected returns. Parameter β 
measures the asset sensibility to the variations on the market returns [1]. 
     In the classical financial analysis, parameter β is assumed to be time invariant 
and returns have a Gaussian distribution [2], but there is considerable general 
evidence that these assumptions are invalid in several financial markets as 
US markets [3] and Australia [4]. 
     During the first 1970’s researchers saw the first applications of the Kalman 
filter to the estimation of the systematic risk [5,6]. The proposed model for β  
was the Random Walk Model [7] requiring the estimation of the unknown 
variances. Many researchers investigated the validity of the CAPM in presence of 
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higher moments and their effects on asset prices. In [8] the CAPM was extended 
to incorporate the effect of skewness on the asset evaluation, while in [9] the 
effect of co-curtosis on the asset prices was examined.  
     In this work we suppose that the asset systematic risk β is time-variant non-
Gaussian and we study the Italian financial market describing the relation 
between the assets return and the market index return by means of the market 
model. We assume that β follows a Random Walk Model. Starting from [10], 
where we supposed that random variables were Gaussian, we develop a new 
approach removing such hypothesis and we analyse a more realistic model  
where the random variables involved are non-Gaussian; since the knowledge of 
the asset return components is not complete, we assume that the moments of the 
random variables are unknown. Before starting with the estimation of β we need 
to estimate such moments, by means of a Markov estimate [11]. 
     As already mentioned, β is non-Gaussian, therefore only the mean value and 
the variance of returns are not sufficient for the statistical characterization of the 
return distribution. In fact, it is known that in the Gaussian case the conditional 
expectation, which gives the minimum variance estimate, is a linear function of 
the observations and can be easily computed. In the non-Gaussian case this is not 
true, so that it is necessary to look for suboptimal estimates.  
     Following a state-space approach and adopting the minimum variance 
criterion [12], our aim is to find a more accurate estimate than the simple 
recursive linear one, that, as well known, admits the geometrical representation 
as the projection of the random β in the Hilbert space of the linear transformation 
of the output, namely L(y). To improve such estimate our idea is to project it on 
the larger Hilbert space generated by the 2-nd order polynomial transformations 
of the output measurements, P(y). Because P(y) contains L(y) the estimation 
error will decrease. Our approach requires the definition of an “extended 
system”, in which the output is defined as the aggregate of the original output 
and of its second order Kronecker powers.  
     This paper is organised as follows. In section 2 the standard market model 
regression able to define an unconditional beta for any asset is presented whereas 
in section 3 Kalman methodology, applied to the “extended system” by which 
conditional time dependent betas may be estimated, is analysed. Section 4 is 
devoted to present time-varying betas generated for Italian data and finally 
section 5 presents some conclusions based on the empirical evidence obtained in 
this study. 

2 The model 

The relation between the asset return and the market index return can be 
expressed as follows: 

 Ri,t = α i,t + βi,t RM,t + εi,t                t = 1,..., T (1)
 
where: 

• Ri,t is the return for the asset i during the period t; 

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 

216  Computational Finance and its Applications II



• RM,t is the return for the market index during the period t; 
• αι,t is a random variable that describe the component of the return for 

the asset i which is independent from the market return; 
• εi,t is the random disturbance vector such that: 

o  E(εi,t) = 0;  ∀i, ∀t 
o jitjiE T

tjti ≠∀∀∀= ,,,;0)( ,, εε  

o ττεε τ ≠∀∀∀= ttiE T
iti ,,,;0)( ,,  

o tiRE T
tMti ∀∀= ,.0)( ,,ε  

Equation (1) shows that the return for the asset i during the period t, Ri,t, depends 
on the return for the market index RM,t on the same time. Moreover, the relation 
between these two variables is linear. 
     Coefficient β is the most important parameter; it shows how asset returns vary 
with the market returns and is used to measure the asset systematic risk, or 
market risk. 

In literature there are many models able to describe systematic risk. All of them 
can be represented by a simple two equation model. There are numerous studies 
assuming that asset prices follow the Random Walk model (RW) [7]. The 
Random Walk model can be expressed as follows  

Ri,t = αi,t + βi,tRM,t + εi,t (2)
αi,t = αi,t–1 +  ui,t (3)
βi,t = βi,t–1 +  ηi,t (4)

We assume that the random variable β0 (initial condition) and the random 
sequences { εi,t}, { ui,t} and { ηi,t} satisfy the following conditions for t ≥ 0: 

• E{εi,t} = 0, E{ui,t} = 0, E{ηi,t} = 0, E{ β0} = 0; (5)
• all the noises moments up to the 4th order are finite; 
• the noises{ εi,t}, { ui,t} and { ηi,t} are the sequences of independent non-

Gaussian random variables. 
We remark that no knowledge is assumed on the noises moments values; before 
proceeding is helpful to represent the Random Walk Model in the state space. 

2.2 System equations 

It is possible to define observation and state equations: 
• observation equation: 

                                       Ri,t = y(t) = C(t)x(t) + ψ(t) (6)
This equation represents the market model with time-varying coefficients. 
Matrix C(t) has dimensions T × 2 so that each row will represent the observations 
at certain point in time; this matrix has the following structure 
                                                    C(t) = [1 | RM,t]  (7)
and is assumed to be known. 
     The state vector x(t) has dimensions 2×1 and represents the α and β 
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coefficients at time t: 
                                              x(t) = [α t | β t]T . (8)

ψ (t) is the part of the asset return y(t) which is not modelled and represents the 
random sequence {ει,t}. The first four moments of the output noise are unknown, 
assumed finite and indicated by [ ]( ) .4,,1,)( …=htE hψ  

• state equation assumes this general form 
                                          x(t) = Ax(t – 1) + ζ(t) (9)
The first four moments of the state noise ζ (t) are assumed finite (for hypothesis), 
indicated by [ ]( ) 4,,1',)( …=′ htE hζ  and its values are unknown. 
     In the model adopted in the present work (RW), matrix Α is the 2×2 identity 
matrix while vector ζ(t) models the random part of the state vector: 
                                                   ζ (t) = [ut | ηt]T . (10)
Note that the values of the state noise moments depend on the moments of the 
random sequences {ηi,t} and {ui,t}, so that it is necessary to estimate six 
parameters – second, third and fourth moments of the sequences {ηi,t}, {ui,t} (for 
hypothesis all the random sequences are zero mean). 
     Moreover we must estimate second, third and fourth moments for the three 
noise considered sequences. We represent these unknown parameters as a vector 
represented by ( ) .,,,,,,,, 432432432

εεεηηη σσσσσσσσσϑ uuu=  

3 β  estimation 

As we have already seen in section 2, our aim is to find the minimum variance 
estimate of the state with respect to the output that coincides with its conditional 
expectation. While in the Gaussian case we obtain exactly a linear optimal 
solution, in our case the problem does not have an immediately recursive 
solution, so that we look for suboptimal estimates that are more accurate than the 
linear one. 
     To develop our approach, we need to use Kronecker algebra. Definitions and 
theorems that are necessary can be found in [13]. 

3.1 The extended system 

To obtain the desired recursive estimates of (6) and (9) we define the 2-degree 
polynomial observation Y ∈ℜµ, µ=m + m2, where m is the output dimension 
(in our case m=1) 
 

[ ] 







=

)(
)(

)( 2 ty
ty

tY  
 

(11)

and the extended state  X∈ℜχ, χ = n+n2, where n is the state dimension (in our 
case n=2) 

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 

218  Computational Finance and its Applications II

The quadratic rilter and 



[ ] 







=

)(
)(

)( 2 tx
tx

tX  
 

(12)

where with y[2](t) and x[2](t) we denote, respectively, the 2nd Kronecker power of 
the vectors y and x. 
     We can now calculate the second Kronecker power of the state and the output 
equations 
x[2](t) = A[2](t)x[2](t – 1) +ζ [2](t) +  A(t)x(t – 1) ⊗ζ(t) + ζ(t) ⊗ A(t)x(t – 1) (13)

y[2](t) = C[2](t)x[2](t) +ψ[2](t) +  C(t)x(t) ⊗ ψ(t) + ψ(t) ⊗ C(t)x(t) (14)
where with the symbol ⊗ we denote the Kronecker product. 
By using some properties of the Kronecker algebra, it is possible to rewrite 
previous equations in a compact form and give the equations of the extended 
system  

 (15)

where: 
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indicating the dependence of vectors U and V on θ. Matrix In is the identity 
matrix of dimension n×n and matrix TC ⋅⋅,  is a commutation matrix [14]. 
     We call system (15) augmented system. Its state and observation noises 
( )(tN ′  and )(tN ′′  respectively) are zero mean uncorrelated sequences and are 
also mutually uncorrelated at different times. For these noises we are able to 
calculate their autocovariances (for the initial hypothesis their cross covariance is 
null). Interested reader can found their expressions in [14]. Hence, for the 
augmented system the optimal linear state estimate can be calculated by means 
of the Kalman filter equations. 

3.2 Quadratic filter 

In economic systems, the covariance matrices for the various noise processes in 
the model are assumed to be known and assigned a priori. In this paper we 
estimate the covariance matrices by means of the observations of the returns to 
individual assets and the market portfolio. 
     We can define the following cost index to be minimized in order to obtain the 
desired estimation 

);()()()()(
);()()1()(

ϑ
ϑ

ttttt
tttt

VNXCY
UNAXX

+′′+=
+′+−=

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 

Computational Finance and its Applications II  219



( )[ ] [

] ( )[ ]),);()1(ˆ)();()();()(

);1|()();()1(ˆ)();()()(
1

ϑϑϑ

ϑϑϑϑ

ttttttRt

ttPttttttJ

TT

T

t

T

UXACVYC

CUXACVY

+−−−+⋅



 ⋅−+−−−= ∑

=  (17)

where Pp(t|t-1;θ) is the prediction covariance and R(t;θ) is the covariance of the 
output equivalent noise (16). The above function has been minimized by means 
of the Markov estimate [15]. When the estimation ϑ̂  of the parameter vector is 
calculated, the optimum estimation of the extended state vector is obtained by 
means of the Kalman filter, by using the system matrices evaluated for ϑ̂ . 
     Using the obtained results and taking into account the deterministic and the 
stochastic input we can use the Kalman filter for the extended system. 
     The filter need to be initialised; initial conditions for the state vector and for 
the prediction covariance matrix are: 

{ } { } )0()0()0()1|0(,0)0()1|0(ˆ XXXXX Ψ==−==− TEPE   

Afterwards, it is possible to proceed with the estimation algorithm. At each time 
t, following steps are reiterated: 

)ˆ;()1()( ϑttPtP T
p QAA +−=  (18)

( ) 1
)ˆ;()()1|()()()1|()(

−
+−−= ϑttttPttttPtK TT RCCC  (19)

                                   P(t) = [I – K(t)C (t)]P(t | t – 1)
  

(20)
)ˆ;()1(ˆ)1|(ˆ ϑtttt UXAX +−=−  (21)

                    ( ))1|(ˆ)()()()1|(ˆ)(ˆ −−+−= tttttKttt XCYXX  (22)
where K(t) is the filter gain, P(t) and P(t|t-1) are respectively the filter and 
prediction covariances. 
     The optimal linear estimate of the augmented state process X (k) with respect 
to the augmented observations Y (k) agrees with its optimal quadratic estimate 
with respect to the original observations y(k), in the sense of taking into account 
the second power of y(k). We obtain in this way the optimal quadratic estimate of 
the system (6) and (9). The optimal linear estimate of the original state x(k) with 
respect to the same sets of augmented observations is easily determined by 
extracting the first n components in the vector )(ˆ kX (recall that in our case n=2). 
The optimal estimate of parameter at each time t is then determined by extracting 
the second component in the vector )(ˆ tx . 
     We stress that the proposed algorithm, if we do not calculate the second 
power of the observations, produces the best linear filter, which coincides, as is 
well known, with the optimal filter when the noises are Gaussian. Consequently, 
it becomes necessary to consider higher order filters when the noises have 
distribution far from the Gaussian. By observing formulas that define the 
augmented system parameters, it becomes evident that the computational effort 
of the polynomial filter quickly grows with increasing filter order. However, we 
point out that even low-order polynomial filters (the quadratic filter considered 
in our case) which do not require a particular sophisticated implementation, 
show very high performances with respect to the linear filter. 
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3.3 Goodness of the proposed method 

We assess the accuracy of the forecast using the MAE (Mean Absolute 
Forecasting Error indices) and MSE (Mean Square Forecasting Error) indices 
[16]: 

1. Mean Absolute Forecasting Error: once we forecast itR̂ it is possible to 
measure estimation accuracy using a measure of forecast error which 
compares the forecast to actual values by 

∑
=

−
=

T

t

itit
i T

RR
MAE

1

ˆ
 (23)

A potential problem with the use of MAE measure is that all errors have the 
same weight. An alternative approach is to give an heavier penalty on outliers 
then the MAE measure with the use of squared term by the following index:  

2. Mean Square Forecasting Error (MSE): 

( )
∑
=

−
=

T

t

itit
i T

RRMSE
1

2ˆ
 

 
(24)

  

Table 1:  Statistics for weekly returns data. 

ISX Industry Mean Standard Deviation Skewness Kurtosis 

Food (7) 
Insurance (19) 
Transport (13) 
Banks (53) 
Paper (2) 
Chemicals (21) 
Building materials (13) 
Distribution (6) 
Publishing (11) 
Electronics (29) 
Diversified financials (4) 
Financial holdings (29) 
Real estate (21) 
Equipments (9) 
Miscellaneous industries (2) 
Minerals (7) 
Public utility (18) 
Financial services (3) 
Textile (27) 
Tourism and leisure (14) 
Market Index 

0.0973 
0.1936 
0.2253 
0.2647 

-0.0041 
0.2173 
0.1973 
0.3348 
0.3351 
0.1712 
0.3863 
0.1610 
0.2525 
0.3017 
0.1313 
0.2209 
0.3482 
0.0577 
0.2305 
0.3072 
0.2198

3.9622 
3.4726 
2.8966 
2.6466 
4.3221 
2.5915 
3.2434 
3.5637 
3.8691 
2.5269 
4.7617 
3.2995 
3.3365 
3.0579 
5.6184 
3.0296 
2.5856 
3.6974 
2.9455 
3.0166 
2.1500

7.0161 
0.6320 
0.3902 
0.8518 
0.9565 
0.7134 
0.5810 
0.5201 
1.5298 
0.6609 
4.0280 
0.5838 
1.2264 
0.6262 
0.1467 
0.7040 
0.4932 
0.6715 
5.5834 
1.0332 
0.5214

108.0010 
5.4050 
5.0322 
7.2513 
6.3610 
4.9909 
4.2747 
4.7679 

11.6685 
5.4241 

34.2872 
4.5906 
7.2478 
5.4661 

11.4537 
6.1690 
3.5527 
4.8213 

77.8821 
6.0254 
4.7846 

 

4 Empirical results 

The concept of beta is well known in the financial community and its values are 
estimated by various technical service organizations.  
     Generally speaking, we expect that aggressive companies or highly leveraged 
companies have high betas, whereas companies whose performance is unrelated 
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to the general market behaviour have low betas. In this paper the data used are 
weekly price relative information for 20 Italian Stock Exchange industries 
provided by TraderLink s.r.l.. Our full sample period is extended from May 1991 
to June 2001. The data were expressed in Italian lyres and percentage returns 
were created for the analysis.  
     In table 1 are reported information about the distributional properties of the 
industry sector returns used in our study; in the first column the name of the 
industry and the number of considered firms in each sector (in parenthesis) are 
reported. Note that there is a correlation between the risk of each industry (the 
standard deviation) and the number of firms in each sector. In fact, the standard 
deviation for the industry with the largest number of firms (Banks – 
53 companies) has a smaller value than the Paper industry (2 firms). Distribution 
of the industry return is leptokurtic. Moreover Diversified financials, Food and 
Textile exhibit high level of skewness. 

Table 2:  MAE and MSE forecast error results. 

MAE MSE  
ISX industry 
 Linear  

Filter 
Quadratic 

Filter 
Improvement 
(|MAEQ-MAEL|) 

Linear  
Filter 

Quadratic 
Filter 

Improvement 
(|MAEQ-MAEL|) 

Food 
Insurance 
Transport 
Banks 
Paper 
Chemicals 
Building materials 
Distribution 
Publishing 
Electronics 
Diversified financials 
Financial holdings 
Real estate 
Equipments 
Misc. industries 
Mineral 
Public utilities 
Financial services 
Textiles 
Tourism and leisure 

0.8061 
0.7073 
0.5907 
0.4515 
1.2874 
0.4741 
0.6840 
0.8611 
0.9296 
0.4771 
1.1486 
0.5255 
0.7240 
0.7728 
1.6283 
0.7874 
0.6433 
1.0708 
0.5191 
0.6969

1.7020e-2 
1.4641e-2 
1.2154e-2 
9.1051e-3 
2.5247e-2 
9.9739e-3 
1.4281e-2 
1.8579e-2 
1.8035e-2 
9.3423e-3 
2.1778e-2 
1.0353e-2 
1.3892e-2 
1.5111e-2 
3.2820e-2 
1.5627e-2 
7.2584e-3 
2.1248e-2 
9.9448e-3 
1.3613e-2

0.7891 
0.6926  
0.5785  
0.4424  
1.2622  
0.4641  
0.6697  
0.8425  
0.9116  
0.4677  
1.1268  
0.5151  
0.7101  
0.7577  
1.5955  
0.7718  
0.6360  
1.0495  
0.5091  
0.6833

1.3679 
0.9412 
0.6453 
0.3894 
3.2974 
0.4217 
0.9303 
1.3955 
1.8858 
0.4118 
3.4293 
0.4930 
1.1918 
1.1851 
6.2683 
1.2061 
0.7298 
2.1797 
0.4816 
1.0309

6.1831e-4 
4.1161e-4 
2.7302e-4 
1.6032e-4 
1.2571e-3 
1.8257e-4 
4.2506e-4 
6.6215e-4 
6.9256e-4 
1.6036e-4 
1.2267e-3 
1.9494e-4 
4.4448e-4 
4.5278e-4 
2.4329e-3 
4.9693e-4 
9.7258e-5 
8.8923e-4 
1.7282e-4 
3.8915e-4

1.3673 
    0.9408 
    0.6450 
    0.3892 
    3.2961 
    0.4215 
    0.9299 
    1.3948 
    1.8851 
    0.4116 
    3.4281 
    0.4928 
    1.1914 
    1.1846 
    6.2659 
    1.2056 
    0.7297 
    2.1788 
    0.4814 
    1.0305 

 
     The standard market model was estimated for every Italian industry, using the 
domestic market index. To evaluate the performance of beta estimates we 
calculate the MAE and MSE metrics presented above ((23)-(24)). The MSE and 
MAE measures are presented in table 2.  
     Notice that the proposed method (the quadratic filter) produced in all 20 
industries low level of forecast error demonstrating the effectiveness of the 
chosen estimation approach. 
     It is important to emphasize that quadratic filter follows variations of β 
parameter better than the linear one, so that the output restored by means of the 
estimated parameters in the case of quadratic filter is more similar to the true 
output than the output obtained by means of the linear filter, as shown in the 
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following figures 1 and 2. 
     In these figures is represented a comparison between a portion of the true 
output (returns for the Public utilities sector) and the restored output so that it is 
possible to better appreciate the performances of the two filters. It is evident that 
in the quadratic case the restored output practically coincides with the true 
output. 
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Figure 1: Matching between true and restored output (Linear filter). 
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Figure 2: Matching between true and restored output (Quadratic filter). 

5 Conclusions 

In this paper we face the problem of systematic risk beta estimation. The 
presented results show that it is possible to estimate conditional time-dependent 
betas applying the quadratic filter to a sample of returns on Italian industry 
portfolios over the period 1991-2001. The obtained results by the proposed 
method are indeed much more accurate than those obtained by the classical 
linear filtering. 
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