
Applications of penalized binary choice
estimators with improved predictive fit

D. J. Miller1 & W.-H. Liu2

1 Department of Economics, University of Missouri, USA
2 National Defense Management College, National Defense University,
Taiwan, Republic of China

Abstract

This paper presents applications of penalized ML estimators for binary choice
problems. The penalty is based on an information theoretic measure of predic-
tive fit for binary choice outcomes, and the resulting penalized ML estimators are
asymptotically equivalent to the associated ML estimators but may have a better
in-sample and out-of-sample predictive fit in finite samples. The proposed meth-
ods are demonstrated with a set of Monte Carlo experiments and two examples
from the applied finance literature.
Keywords: binary choice, information theory, penalized ML, prediction.

1 Introduction

The sampling properties of the maximum likelihood (ML) estimators for binary
choice problems are well established. Much of the existing research has focused
on the properties of estimators for the response coefficients, which is important for
model selection and estimating the marginal effects of the explanatory variables.
However, the use of fitted models to predict choices made by agents outside the
current sample is very important in practice but has attracted less attention from
researchers. In some cases, the ML estimators may exhibit poor in-sample and
out-of-sample predictive performance, especially when the sample size is small.
Although several useful predictive goodness-of-fit measures have been proposed,
there are no standard remedies for poor in-sample or out-of-sample predictive fit.

As noted by Train [1], there is a conceptual problem with measuring the in-
sample predictive fit – the predicted choice probabilities are defined with respect to
the relative frequency of choices in repeated samples and do not indicate the actual
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probability that a respondent takes a particular action. Consequently,
researchers should focus on the out-of-sample (rather than in-sample) predictive
fit of an estimated binary choice model. Accordingly, Miller [2] derives a penal-
ized ML estimator with improved out-of-sample predictive fit by adding a measure
of in-sample predictive fit to the log-likelihood function. The purpose of this paper
is to compare the ML and penalized ML estimators using examples from applied
financial research.

2 ML and penalized ML binary choice estimators

2.1 ML Estimation of the binary choice model

For i = 1, . . . , n independent agents, we observe Yi = 1 if agent i takes a par-
ticular action and Yi = 0 otherwise. The binary decision process is represented
by a latent utility model, Y ∗

i = xiβ + εi, where Y ∗
i is the unobserved net utility

associated with taking the action, xi is a k-vector of individual–specific explana-
tory variables, xiβ is the conditional mean component of Y ∗

i that is common to
all agents with characteristics xi, and εi is the mean-zero idiosyncratic error com-
ponent of latent utility. The agent takes the action (Yi = 1) if their net utility is
positive (Y ∗

i > 0), and the conditional probability that the agent takes the action is

Pr [Yi = 1 | xi ] = Pr [Y ∗
i > 0 | xi ] = Pr [εi > −xiβ | xi ] = Fε (xiβ) (1)

where the last equality follows if the latent error distribution is symmetric about
zero. The two most commonly used model specifications for Fε are the Normal
(0, σ2) CDF (normit or probit model) and the Logistic(0, σ) CDF (logit model).
The response coefficients β are only defined up to scale, and the parameters are
commonly identified under the normalization σ = 1.

Given probability model Fε, the log-likelihood function is

� (β;Y,x) =
n∑

i=1

Yi ln [Fε (xiβ)] +
n∑

i=1

(1 − Yi) ln [1 − Fε (xiβ)] (2)

The associated necessary conditions for the ML estimator of β are

∂� (β;Y,x)
∂β

=
n∑

i=1

x′
i

[
Yi fε (xiβ)
Fε (xiβ)

− (1 − Yi) fε (xiβ)
1 − Fε (xiβ)

]
= 0 (3)

where fε (xiβ) is the PDF for the latent error process evaluated at xiβ. In general,
the ML estimation problem does not have a closed-form (explicit) solution for
the estimator of β (denoted β̂), and numerical optimization tools must be used to
compute the ML estimates for a given sample.

Under standard regularity conditions, the ML estimator is
√

n-consistent such
that β̂

p→ β0 as n → ∞ where β0 is the true parameter vector (up to arbitrary
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scale). The ML estimators are also asymptotically normal as
√

n
(
β̂ − β0

)
d→

N
(
0,∆−1

0 Ξ0∆−1
0

)
where

∆0 ≡ lim
n→∞ E

[
−n−1 ∂2�(β;Y,x)

∂β∂β′

∣∣∣∣
β=β0

]
(4)

Ξ0 ≡ lim
n→∞ E

[
n−1 ∂�(β;Y,x)

∂β

∣∣∣∣
β=β0

∂�(β;Y,x)
∂β′

∣∣∣∣
β=β0

]
(5)

If the binary choice model is correctly specified, the information matrix equality
holds such that Ξ0 = −∆0 and the ML estimator is asymptotically efficient where√

n
(
β̂ − β0

)
d→ N

(
0,∆−1

0

)
.

The predicted values for each Yi in a fitted binary choice model are derived from
the estimated choice probabilities under the step function

Ŷi =

 0 if Fε

(
xiβ̂

)
< 0.5

1 if Fε

(
xiβ̂

)
≥ 0.5

(6)

where Fε

(
xiβ̂

)
is the estimated choice probability conditional on xi. The stan-

dard diagnostic tool for describing in-sample predictive fit of a binary choice
model is the prediction success table (see Maddala [3])

Actual Predicted Outcomes

Outcomes Ŷi = 1 Ŷi = 0

Yi = 1 ϕ11 ϕ10

Yi = 0 ϕ01 ϕ00

Although prediction success tables are typically reported as counts of correct or
incorrect predictions, the rows of the tables in this study are stated as the condi-
tional frequency of predicted outcomes given the actual outcomes

ϕ00 =
∑n

i=1(1 − Yi)(1 − Ŷi)
n0

and ϕ01 =
∑n

i=1(1 − Yi)Ŷi

n0
(7)

ϕ10 =
∑n

i=1 Yi(1 − Ŷi)
n1

and ϕ11 =
∑n

i=1 YiŶi

n1
(8)

where n0 =
∑n

i=1(1−Yi) is the number of observed zeroes, n1 =
∑n

i=1 Yi is the
number of observed ones, and n0 + n1 = n.
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2.2 An information theoretic measure of predictive fit

To form a penalty function for predictive fit, Miller [2] considers the case of
ideal in-sample predictive success for which the predicted outcomes Ŷi match
the observed outcomes Yi for all i. The ideal conditional outcomes for the pre-
diction success table are denoted ϕ0

00 = ϕ0
11 = 1 and ϕ0

01 = ϕ0
10 = 0. Fur-

ther, the goodness of in-sample predictive fit for an estimated model relative to the
ideal case is measured as the difference between the estimated conditional distri-
butions ϕj ≡ (ϕj0, ϕj1) and the ideal distributions ϕ0

j ≡ (ϕ0
j0, ϕ

0
j1

)
for j = 0, 1.

From information theory, one plausible measure of this difference is the Kullback–
Leibler cross-entropy or directed divergence functional (see Kullback and Leibler
[4])

I
(
ϕ0

j , ϕj

)
= ϕ0

j0 ln

(
ϕ0

j0

ϕj0

)
+ ϕ0

j1 ln

(
ϕ0

j1

ϕj1

)
= − ln (ϕjj) ≥ 0 (9)

for each j. Under this divergence criterion, I
(
ϕ0

j , ϕj

)
= 0 if the estimated con-

ditional distributions coincide with the ideal case, ϕ00 = ϕ11 = 1 (i.e., zero
predictive divergence). Otherwise, I

(
ϕ0

j , ϕj

)
increases as the observed and ideal

cases diverge (i.e., there are more prediction errors).
Further, to make the penalty function suitable for estimation purposes, Miller

[2] replaces the step function in eqn. (6) with a smooth approximation, g (z, θ) :
[0, 1] → [0, 1], that is continuously differentiable when θ is finite, monotonically
increasing, and converge to the step function as θ → ∞. The associated approxi-
mation to the elements of the prediction success table are formed by replacing Ŷi

with g (Fε(xiβ), θ) in eqns. (7) and (8) above, and the approximated elements in
the table are denoted ϕa

jh. The approximated predictive divergence functional is

I
(
ϕ0

j , ϕ
a
j

)
= − ln

(
ϕa

jj

) ≥ 0 (10)

for each j. The properties of the penalized ML estimator hold for any g(z, θ) that
satisfies these conditions, and the empirical examples presented in the next section
are based on the scaled hyperbolic tangent function

g (z, θ) =
1 + tanh(θ(z − 0.5))

2
(11)

2.3 Sampling properties of the penalized ML estimator

Formally, the penalized ML objective function is

M(β, η) = � (β;Y,x) + η
1∑

j=0

ln
(
ϕa

jj

)
(12)

and the penalized ML estimator is denoted β̃η. The parameter η ≥ 0 controls the
trade-off between the log-likelihood and the predictive fit of the estimated binary
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choice model. As η increases, predictive fit becomes more important in the esti-
mation problem, and the penalized ML estimates are more strongly adjusted. The
necessary conditions are

∂� (β;Y,x)
∂β

+
η

n1ϕa
11

n∑
i=1

∂gi

∂Fi

∂Fi

∂β
Yi − η

n0ϕa
00

n∑
i=1

∂gi

∂Fi

∂Fi

∂β
(1−Yi) = 0 (13)

where gi ≡ g (Fε(xiβ), θ) and Fi ≡ Fε(xiβ). Note that eqn. (13) reduces to the
standard ML necessary condition in eqn. (3) when η = 0. For η > 0, the necessary
conditions for the penalized ML estimation problem may be numerically solved
for β̃η .

The necessary conditions stated in eqn. (13) may also be used to prove the fol-
lowing claims about the large-sample properties of β̃η for finite η ≥ 0:

• Proposition 1: β̃η is
√

n-consistent such that β̃η
p→ β0.

• Proposition 2: β̃η is asymptotically equivalent to β̂.
Formal proofs are based on the differences in stochastic order of the terms in
eqn. (13) where the log-likelihood term is Op(n) and the penalty terms are Op(1)
(assuming n1/n = O(1)). Thus, the penalty terms have smaller stochastic order
than the log-likelihood component and do not affect the first-order asymptotic
properties of the ML estimator.

2.4 Predictive properties of the penalized ML estimator

In small samples, the penalty in eqn. (12) only adjusts the estimated binary choice
probabilities that are local or limited to a small neighborhood about the 0.5 thresh-
old in the smoothed step function, g(z, θ). The penalized ML procedure is also
adaptive and only corrects some of the ML prediction errors without inducing
other in-sample prediction errors. To prove that the method may improve predic-
tive fit, Miller [2] provides the following existence theorem:

• Proposition 3: There exists some η > 0 such that β̃η has weakly smaller

approximated in-sample predictive divergence than β̂.
He also demonstrates the locally adaptive character of β̃η by showing that the fitted
binary choice probabilities are increased if Yi = 1 and (i) η increases (predictive fit
becomes more important), (ii) Fε(xiβ̃η) is closer to 0.5 (observations closer to the
threshold are better candidates for adjustment), (iii) n1 decreases (smaller samples
require stronger adjustment), and (iv) ϕa

11 decreases (less favorable predictive suc-
cess for observations of Yi = 1 require stronger adjustment). Finally, Miller [2]
shows how to use a cross-validation (CV) estimator of the penalty weight parame-
ter η. The value of η selected under the CV criterion is denoted η̃ and is Op

(
n1/3

)
such that β̃η̃ has the same first-order asymptotic properties as β̃η stated in Propo-
sitions 1 and 2.
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3 Examples

In this section, two examples from the applied finance literature are used to illus-
trate the performance of the penalized ML logit estimator (with alternative values
of η > 0) relative to ML logit (η = 0). Other plausible estimators are the ML
probit estimator as well as semiparametric estimators such as the maximum score
estimator introduced by Manski [5, 6] and the smoothed maximum score estimator
developed by Horowitz [7]. Although the maximum score estimators are expected
to have good predictive fit because the objective functions are the count of cor-
rectly predicted Yi = 1 outcomes, the ML logit estimator has the best predictive
fit among these traditional alternatives.

3.1 Example 1: mortgage data

The first example is based on data from Dhillon, Shilling, and Sirmans [8]. The
dependent variable represents the decision of a mortgage applicant to accept a fixed
rate or adjustable rate mortgage (ARM) (i.e., Yi = 1 if ARM), and the data include
n = 78 observations (n0 = 32 and n1 = 46). The set of explanatory variables
includes the fixed interest rate, the difference between the fixed and variable rates,
the Treasury yield spread, the ratio of points paid on adjustable versus fixed rate
mortgages, the ratio of maturities on adjustable versus fixed rate mortgages, and
the net worth of the applicant. The predictive success table for the fitted ML logit
model is presented in the upper left corner of table 1. Although n is relatively
small, the ML logit model provides reasonably good predictive fit for the fixed
rate cases (83% correct) and the ARM cases (72% correct). The prediction success
results for the optimal penalized ML estimator are stated in the lower left corner
of table 1. Under η̃ = 11, the prediction success rates increase to over 93% for the
fixed rate case and over 81% for the ARM case. The prediction success tables for
other values of η are also presented in table 1, and the fitted penalized ML model
achieves perfect predictive fit as η increases above 100.

To illustrate the locally adaptive character of the penalized ML estimator, the
fitted ML logit (solid line) and penalized ML logit choice probabilities (circles)
are presented in figure 1. The observations are the ordered ML logit predictions
Fε(xiβ̂) so that outcomes below the 0.5 threshold are Ŷi = 0 and outcomes above
the line are Ŷi = 1. The penalized ML logit predicted values (circles) are vertically
shifted away from the solid line to reflect the locally adaptive changes in the ML
logit probabilities. Note that the adjustments are small in cases with strong pre-
dictions (i.e., Fε(xiβ̂) < 0.2 or Fε(xiβ̂) > 0.8), and most of the adjustments to
the ML logit outcomes are restricted to outcomes in a neighborhood of 0.5. In the
figure, the five observations marked with ‘plus’ symbols were initially predicted as
Ŷi = 0 under the ML logit model but were corrected to Ỹi = 1 under the penalized
ML procedure. Further, the three ‘minus’ cases were initially predicted as Ŷi = 1
but were corrected under the penalized ML logit model. These eight corrected pre-
dictions account for the gain in predictive fit reported in table 1 (0.8261 + 5/46
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Table 1: Prediction success tables for Examples 1 and 2.

Example 1: Mortgage Data Example 2: Credit Data

Ŷi = 1 Ŷi = 0 η Ŷi = 1 Ŷi = 0 η

Yi = 1 0.8261 0.1739 0 0.9029 0.0971 0

Yi = 0 0.2812 0.7188 0.6300 0.3700

Yi = 1 0.9348 0.0652 25 0.9943 0.0057 200

Yi = 0 0.1250 0.8750 0.2267 0.7733

Yi = 1 0.9348 0.0652 75 1.0000 0.0000 500

Yi = 0 0.0312 0.9688 0.1233 0.8767

Yi = 1 1.0000 0.0000 101 1.0000 0.0000 3223

Yi = 0 0.0000 1.0000 0.0000 1.0000

Yi = 1 0.9348 0.0652 η̃ = 11 0.9771 0.0229 η̃ = 88
Yi = 0 0.1875 0.8125 0.3100 0.6900

n1 = 46 n0 = 32 n1 = 700 n0 = 300

= 0.9348 for Yi = 1 and 0.7188 + 3/32 = 0.8125 for Yi = 0). Also, note that
there are four observations among these outcomes that were correctly predicted
and were not adjusted due to the adaptive character of the penalized ML estimator.

3.2 Example 2: credit data

Credit scoring models are used to predict the potential success or failure of a bor-
rower to repay a loan given the type of loan and information about the borrower’s
credit history. Hand and Henley [9] note that lenders increasingly rely on statistical
decision tools for credit scoring due to the large increase in loan applications and
the limited number of experienced credit analysts. Fahrmeir and Tutz [10] provide
a set of credit scores assigned by experienced loan analysts to n = 1, 000 (with
n1 = 700 and n0 = 300) individual loan applicants in southern Germany. The
dependent variable is the credit risk of a loan applicant (Yi = 1 for a good credit
risk), and the explanatory variables include an indicator of the applicant’s relation-
ship with the lender, the level of the applicant’s checking balance, the loan dura-
tion, the applicant’s credit history, the type of loan (private versus professional),
and an indicator of the applicant’s employment status. The predictive success table
for the fitted ML logit model appears in the upper right corner of table 1, and the
predictive fit is relatively good for good-risk applicants (i.e., Yi = 1) but is quite
poor for the poor-risk cases. The predictive success table for the optimal penalized
ML logit estimator appears in the lower right corner of table 1, and the predictive
fit in both categories is improved relative to ML logit. The results for other values
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Figure 1: ML and optimal penalized ML logit predictions, Example 1.

of η are also reported in table 1, and the penalized ML logit estimator achieves
perfect predictive fit for η ≥ 3, 223.

3.3 Out-of-sample predictive performance

Although Henley and Hand [11] show that the ML logit estimator is among the
most accurate methods for predicting poor credit risks, lenders may achieve addi-
tional gains if they can further reduce the potentially large costs of making poor
loans. To examine the predictive performance of the ML logit and penalized ML
logit estimators, a bootstrap procedure is used to estimate the expected in-sample
and out-of-sample predictive success tables given the data for Example 2. For
each of m = 5, 000 replications, n̄ < n elements are drawn at random from the
n = 1, 000 observations, and the ML logit and optimal penalized ML logit param-
eter estimates are computed from the remaining n− n̄ observations. The specified
levels of the out-of-sample observation counts, n̄ ∈ {100, 150, 200, 250}, repre-
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Table 2: In-sample and out-of-sample predictive success for Example 2.

Optimal Penalized ML Logit Estimator

In-Sample Out-of-Sample

Ŷi = 1 Ŷi = 0 Ŷi = 1 Ŷi = 0 n̄

Yi = 1 0.9825 0.0175 0.6457 0.3543 100

Yi = 0 0.3038 0.6962 0.2444 0.7556

Yi = 1 0.9837 0.0163 0.7119 0.2881 200

Yi = 0 0.2996 0.7004 0.3182 0.6808

Yi = 1 0.9848 0.0152 0.7972 0.2028 400

Yi = 0 0.2939 0.7061 0.4228 0.5772

Yi = 1 0.9861 0.0139 0.8749 0.1251 600

Yi = 0 0.2876 0.7124 0.6023 0.3977

Maximum Likelihood Logit Estimator

In-Sample Out-of-Sample

Ŷi = 1 Ŷi = 0 Ŷi = 1 Ŷi = 0 n̄

Yi = 1 0.9097 0.0903 0.9057 0.0943 100

Yi = 0 0.6410 0.3590 0.6488 0.3512

Yi = 1 0.9100 0.0900 0.9048 0.0952 200

Yi = 0 0.6380 0.3620 0.6450 0.3550

Yi = 1 0.9098 0.0902 0.9052 0.0948 400

Yi = 0 0.6356 0.3644 0.6387 0.3613

Yi = 1 0.9099 0.0901 0.8988 0.1012 600

Yi = 0 0.6331 0.3669 0.6323 0.3677

sent 10%, 20%, 40%, and 60% of the total observations in the data set. For each
n̄ and simulation trial j = 1, . . . , m, the fitted ML logit and penalized ML logit
models are used to predict the n − n̄ in-sample and n̄ out-of-sample bootstrap
observations. The in-sample and out-of-sample prediction success tables are com-
puted for each bootstrap trial, and the expected values of the tables are estimated
by the sample averages of the replicated predictive success tables.

The bootstrap simulation results are reported in table 2. The in-sample and out-
of-sample results for the ML logit estimator are quite close to the prediction suc-
cess tables reported in table 1. For the optimal penalized ML logit estimator, the
in-sample predictive success results are also quite comparable to the outcomes
reported in table 1. As expected, the out-of-sample predictive fit is not as good
for the good-risk category (Yi = 1), and the ML logit estimator has better predic-
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tive success. However, as noted above, the key decision error to avoid is offering
a loan to a poor credit risk. For the poor-risk case (Yi = 0), the optimal penal-
ized ML logit estimator exhibits uniformly better predictive success, especially as
the amount of in-sample information used to form the out-of-sample predictions
increases relative to n̄. In particular, the prediction success rate for poor credit risks
is more than double the rate achieved by ML logit when n̄/n is only 10%. Given
that the credit databases available for in-sample model estimation may be very
large relative to the number of credit applications, the bootstrap evidence suggests
that penalized ML logit may have significant advantages relative to ML logit in
reducing the costs of extending credit to risky borrowers.
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