
Applying design patterns for web-based 
derivatives pricing 

V. Papakostas, P. Xidonas, D. Askounis & J. Psarras 
School of Electrical and Computer Engineering, 
National Technical University of Athens, Greece 

Abstract 

Derivatives pricing models have been widely applied in the financial industry for 
building software systems for pricing derivative instruments. However, most of 
the research work on financial derivatives is concentrated on computational 
models and formulas. There is little guidance for quantitative developers on how 
to apply these models successfully in order to build robust, efficient and 
extensible software applications. The present paper proposes an innovative 
design of a web-based application for real-time financial derivatives pricing, 
which is entirely based on design patterns, both generic and web-based 
application specific. Presentation tier, business tier and integration tier patterns 
are applied. Financial derivatives, underlying instruments and portfolios are 
modelled. Some of the principal models for evaluating derivatives            
(Black–Scholes, binomial trees, Monte Carlo simulation) are incorporated. 
Arbitrage opportunities and portfolio rebalancing requirements are detected in 
real time with the help of a notification mechanism. The novelty in this paper is 
that the latest trends in software engineering, such as the development of web-
based applications, the adoption of multi-tiered architectures and the use of 
design patterns, are combined with financial engineering concepts to produce 
design elements for software applications for derivatives pricing. Although our 
design best applies to the popular J2EE technology, its flexibility allows many of 
the principles presented to be adopted by web-based applications implemented 
with alternative technologies. 
Keywords: financial applications, financial derivatives, pricing models, design 
patterns, J2EE patterns, web-based applications, multi-tiered architectures. 

Computational Finance and its Applications II  193

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 
doi:10.2495/CF060191



1 Introduction 

Financial derivatives have become extremely popular among investors for 
hedging and speculating. Their growing use has triggered an increased interest in 
financial engineering and the emergence of several computational models for 
evaluating them and determining their characteristics. 
     Numerous software systems and applications have been developed for 
implementing such models. Some are in-house applications for large financial 
institutions and investment banks while others are available as software products. 
Despite the plethora of computational models that are present in the relevant 
literature, the existence of books and publications on the design and construction 
of software systems for implementing them is limited. Even these are usually 
constrained to conventional object-oriented design, circumstantial use of design 
patterns and traditional programming languages like C++ or Visual Basic. 
     The objective of the present paper is to propose an innovative design of a 
web-based application for real-time financial derivatives and portfolios pricing. 
The modelled application quotes derivatives and underlying assets prices from 
market data feeds and applies pricing models for computing derivatives and 
portfolios theoretical values and characteristics. In addition to rendering pricing 
information on web pages, it can send notifications (e.g. emails) when prices or 
attributes of derivatives or portfolios satisfy certain conditions (e.g. permit 
arbitrage or require portfolio rebalancing). 
     Design patterns play central role in our design, upon which it is almost 
entirely based. Both generic [5] and web-based applications specific patterns 
(J2EE patterns [1]) are applied. The proposed design aims to facilitate the 
introduction of new derivative instruments, additional valuation models and 
alternative market data feeds to the system on subsequent phases after its initial 
release. 

2 Background work 

Joshi [7] and Duffy [3] apply the concepts of object-oriented programming and 
adopt design patterns for evaluating financial derivatives. London [9] assembles 
a number of pricing models implemented in the C++ programming language. 
Zhang and Sternbach [12] model financial derivatives using design patterns. van 
der Meij et al [11] describe the adoption of design patterns in a derivatives 
pricing application. Marsura [10] presents a complete application for evaluating 
derivatives and portfolios using objects and design patterns. Eggenschwiler and 
Birrer [2], and Gamma and Eggenschwiler [4] describe the use of objects and 
frameworks in financial engineering. Koulisianis et al [8] present a web-based 
application for derivatives pricing implemented with the PHP technology, using 
the Problem Solving Environment methodology. 

194  Computational Finance and its Applications II

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 



3 Derivatives pricing models 

It is possible to estimate the value that a financial derivative contract should 
theoretically have from the underlying asset price and the contract 
characteristics. If the difference between the market price and the theoretical 
value of the contract is significant, an investor can achieve guaranteed profit 
(arbitrage). For this reason, derivatives pricing has become the field of extensive 
study for the past three decades. 
     A number of pricing models (analytical and numerical methods) have 
emerged and applied for derivatives pricing [6]. Black–Scholes equation 
provides analytical formulas for calculating theoretical prices of European call 
and put options on non-dividend paying stocks. Binomial trees are particularly 
useful in cases that an option holder has the potential for early exercise. Monte 
Carlo simulation is primarily applied when the derivative price depends on the 
history of the underlying asset price or on multiple stochastic variables. 

4 Multi-tiered architecture 

The present paper proposes the design of an application for derivatives pricing 
that is web-based. The use of the internet introduces certain complexity into our 
model. A multi-tiered architecture has been adopted for our design. Each tier in a 
multi-tiered architecture is responsible for a subset of the system 
functionality [1]. It is logically separated from its adjacent tiers and loosely 
connected to them. It is important to emphasise that a multi-tiered architecture is 
logical and not physical. This means that multiple tiers may be deployed on a 
single machine or a single tier may be deployed on multiple machines, especially 
if it contains CPU intensive components. 

5 Design patterns 

5.1 Presentation tier 

5.1.1 Front Controller 
The Font Controller pattern forms the initial point of communication for 
handling user requests, aiming to reduce the administration and deployment tasks 
for the application [1]. One Front Controller is used for all user requests. It is 
incarnated by the FrontController class, which is a servlet. 

5.1.2 Context Object 
The Context Object pattern encompasses state in a protocol independent way, in 
order to be utilized by different parts of the application [1]. One Context Object 
is used for each type of user request. Requests for futures pricing are modelled 
by the FuturePricingRequestContext class, requests for options pricing by the 
OptionPricingRequestContext class, etc. The Factory pattern is applied for their 
creation. 
 

Computational Finance and its Applications II  195

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 



 

Figure 1: Presentation tier design patterns. 

 

5.1.3 Application Controller 
The Application Controller pattern centralizes the invocation of actions for 
handling requests (action management) and the dispatch of response data to the 
proper view (view management) [1]. Our design suggests the use of the 
ApplicationController interface for modelling Application Controller 
functionality. The PricingAppController class, which implements this interface, 
coordinates Commands and Views related to pricing requests. The 
ManagementAppController class does the same for requests related to instrument 
management, such as adding a new financial instrument to the application. The 
Factory pattern is again applied for their creation. 

5.1.4 View Helper 
The View Helper pattern uses views to encapsulate the code that formats 
responses to user requests and helpers to encapsulate the logic that views require 
in order to obtain response data [1]. In our design, Views are incarnated by a 
number of JSP pages. PortfolioDetailsView displays information related to 
portfolios definition, OptionPricingView displays the results of an option pricing 
request, etc. Business Delegates are used as Helpers. 

5.1.5 Command 
The Command pattern encapsulates the action required as the result of a request 
through the invocation of the corresponding functionality [5]. One Command is 
used for each type of user request. Requests for futures definition invoke 
class FutureDefinitionCommand, requests for portfolio pricing class 
PortfolioPricingCommand, etc. As a result, there is one-to-one correspondence 
among Context Objects and Commands. The Factory pattern is applied for their 
creation. 

5.1.6 Factory 
The Factory pattern is responsible for the creation of objects that implement an 
interface or extend an abstract class. In our design, a number of classes adopt this 

196  Computational Finance and its Applications II

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 



pattern, such as RequestContextFactory for the creation of Context Objects, 
ApplicationControllerFactory for the creation of Application Controllers, 
CommandFactory for the creation of Commands, etc. Factories can be 
configured declaratively through the use of XML files. 

5.1.7 Singleton 
The Singleton pattern defines classes that are allowed to have only one instance 
per application [5]. Each class that adopts the Factory pattern in our design 
adopts the Singleton pattern in addition. 

5.2 Business tier 

5.2.1 Business Delegate 
The Business Delegate pattern encapsulates access to business services, aiming 
to reduce interconnection between components of the presentation and business 
tiers [1]. In our design, one Business Delegate is defined for each Session 
Façade. The PricingDelegate class provides centralised access to the 
PricingFacade class, the ManagementDelegate class to the ManagementFacade 
class and the NotificationDelegate class to the NotificationFacade class. 

5.2.2 Service Locator 
The Service Locator pattern centralises the lookup of services and 
components [1]. One Service Locator, which is incarnated by the ServiceLocator 
class, is used. It also adopts the Singleton pattern. 
 

 

Figure 2: Business tier design patterns. 

5.2.3 Session Façade 
The Session Façade pattern encapsulates components of the business tier and 
exposes coarse-grained services to remote clients, aiming to reduce the number 

Computational Finance and its Applications II  197

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 



of remote method invocations among components of the presentation and 
business tiers [1]. Services related to derivatives and portfolios pricing are 
aggregated to the PricingFacade class. Services related to derivatives and 
portfolios management are encapsulated in the ManagementFacade class. 
Services for the notification mechanism are accumulated in the 
NotificationFacade class. 

5.2.4 Application Service 
The Application Service pattern underlies components that encapsulate business 
logic, aiming to leverage related services and objects (Business Objects) [1]. Our 
design adopts the layer strategy in regard to the use of Application Services. The 
PricingAppService and NotificationAppService classes, which reside on the 
higher layer, expose pricing and notification services respectively. They require 
pricing modelling related functionality, which is provided by the 
PricingModelStrategy interface, which resides on the lower layer, along with the 
BlackScholesAppService, BinomialTreeAppService and MonteCarloAppService 
classes that implement it. Financial instruments volatility is calculated on a daily 
basis by the VolatilityAppService class. 
 

 

Figure 3: Application Service layering. 

5.2.5 Business Object 
The Business Object pattern encapsulates and administers business data, 
behaviour and persistence, aiming at the creation of objects with high 
cohesion [1]. Our design contains a hierarchy of Business Objects that 
correspond to portfolios and financial instruments. They consist of abstract 
classes FinancialInstrumentBO, DerivativeBO and concrete classes PortfolioBO, 
StockBO, IndexBO, CurrencyBO, FutureBO, OptionBO, EuropeanOptionBO, 
and AmericanOptionBO. This way, new derivative types can be added with 
minor modifications. 

5.2.6 Composite Entity 
The Composite Entity pattern aggregates a set of related Business Objects into 
one coarse-grained entity bean, allowing for the implementation of parent objects 
that manage dependent objects [1]. In our design, the PortfolioBO class, which 

198  Computational Finance and its Applications II

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 



represents a portfolio, is defined as parent object and the PortfolioInstrument 
class, which represents a financial instrument that is member of a portfolio, as 
dependent object. Although a PortfolioInstrument object is linked to a 
FinancialInstrumentBO object, it is a separate object. It holds information such 
as quantity and (call/put) position of a specific instrument in a portfolio. 
 

 

Figure 4: Business Objects for financial instruments. 

 

 

Figure 5: Hierarchy of Business Objects for derivatives. 

5.2.7 Transfer Object 
The Transfer Object (or Data Transfer Object) pattern carries multiple data 
across application tiers [1]. Our design adopts the multiple transfer objects 
strategy in regard to the use of Transfer Objects. One Transfer Object is defined 
for each Business Object. This leads to a hierarchy of Transfer Objects that 
correspond to financial instruments and portfolios. They consist of classes 

Computational Finance and its Applications II  199

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 



FinancialInstrumentTO, DerivativeTO, PortfolioTO, StockTO, IndexTO, 
CurrencyTO, FutureTO, OptionTO, EuropeanOptionTO, and 
AmericanOptionTO. 

5.2.8 Strategy 
The Strategy pattern encapsulates a family of algorithms and makes them 
interchangeable [5]. Considering our design, such algorithms are the pricing 
models for derivatives. The PricingModelStrategy interface adopts this pattern. It 
is implemented by the BlackScholesAppService, BinomialTreeAppService and 
MonteCarloAppService classes, which contain the algorithms for the          
Black–Scholes, binomial trees and Monte Carlo models respectively. This way, 
new pricing models can be introduced with minor modifications. 
 

 

Figure 6: Strategy. 

5.2.9 Observer 
The Observer pattern defines an one-to-many correspondence between an 
observable object (Observable or Publisher) and one or more observer objects 
(Observers or Subscribers). When the observable object changes state, all the 
observer objects are automatically notified [5]. 
     The Observer pattern is applied on a very significant feature of our proposed 
design: the notification mechanism. Notifications are sent when the states of 
derivatives instruments or portfolios conform to certain predefined rules. For 
example, when the difference between the market and theoretical price of a 
derivative becomes large enough to permit arbitrage or when the delta of a 
portfolio in respect to one its underlying instruments exceeds a certain value. In 
such cases, users should be notified immediately, in order to take advantage of 
the arbitrage opportunity or perform portfolio rebalancing. 
     For simplicity, the NotificationAppService class is defined as observable 
object and not each Business Object separately. The NotificationAppService class 
is triggered at constant intervals (e.g. every 60 seconds) by a system timer. It 
monitors derivatives and portfolios states, sending notifications to observer 
objects. Observer objects implement the InstrumentListener interface. The 
EmailAppService and SocketAppService classes, which send notifications via 
email and TCP/IP respectively, have been defined as observers. Additional 
observers can be easily introduced. 

200  Computational Finance and its Applications II

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 



 

Figure 7: Observer. 

5.3 Integration tier 

5.3.1 Integration Adapter 
The Adapter pattern converts the interface of an object or system to another 
interface that a client is capable of using [5]. The Integration Adapter pattern is a 
special case of the Adapter pattern which refers to the integration with         
third-party systems that perform similar functionality but provide different 
interfaces, such as market data feeds. In our design, the IntegrationAdapter 
interface adopts this pattern. It is implemented by the HTMLAdapter, 
XMLAdapter and SOAPAdapter classes, which consume market data available in 
HTML, XML and SOAP format respectively. These classes may be further sub-
classed to allow data consumption from different providers. This way, additional 
market data feeds may be introduced with minor modifications. 
 
 

 

Figure 8: Integration tier design patterns. 

Computational Finance and its Applications II  201

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 



6 Conclusions 

The present paper aims to combine the theory behind financial derivatives 
pricing with the latest trends in software engineering, such as the development of 
web-based applications, the adoption of multi-tiered architectures and the use of 
design patterns, in order to propose an innovative design of a web-based 
application for real-time derivatives pricing. Our design is entirely based on the 
adoption of design patterns, both generic and web-based applications specific, 
and incorporates some of the principal models for derivatives pricing        
(Black–Scholes model, binomial methods, Monte Carlo simulation). The 
introduction of new types of derivatives instruments, additional pricing models 
and alternative market data feeds is substantially facilitated by our model. 

References 

[1] Alur, D., Crupi, J., & Malks, D., Core J2EE Patterns: Best Practices and 
Design Strategies, Second Edition, Prentice Hall, 2003. 

[2] Birrer, A., & Eggenschwiler, T., Frameworks in the financial engineering 
domain: an experience report, Proceedings ECOOP ‘93, Springer-Verlag: 
Berlin, LNCS 707, pp. 21-35, 1993. 

[3] Duffy, D., Financial Instrument Pricing Using C++, Wiley, 2004. 
[4] Eggenschwiler, T., & Gamma, E., ET++SwapsManager: Using object 

technology in the financial engineering domain, Proceedings OOPSLA 
‘92, ACM SIGPLAN, 27(10), pp. 166-177, 1992. 

[5] Gamma, E., Helm, R., Johnson, R., & Vlissides, J., Design Patterns: 
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995. 

[6] Hull, J., Options, Futures and Other Derivatives, Fifth Edition, Prentice 
Hall, 2003. 

[7] Joshi, M., C++ Design Patterns and Derivatives Pricing, Cambridge, 
2004. 

[8] Koulisianis, M., Tsolis, G., & Papatheodorou, T., A web-based problem 
solving environment for solution of option pricing problems and 
comparison of methods, Proceedings of the International Conference on 
Computational Science (Part I), pp. 673-682, 2002. 

[9] London, J., Modeling Derivatives in C++, Wiley, 2005 
[10] Marsura P., A Risk Management Framework for Derivative Instruments, 

M.Sc. Thesis, University of Illinois, Chicago, 1998. 
[11] van der Meij, M., Schouten, D., & Eliëns, A., Design patterns for 

derivatives software, ICT Architecture in the BeNeLux, Amsterdam, 1999. 
[12] Zhang, J. Q., & Sternbach, E., Financial software design patterns, Journal 

of Object-Oriented Programming, 8(9), pp. 6-12, 1996. 

202  Computational Finance and its Applications II

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 


