
binomial model

R. W. Chen1 & B. Rosenberg2

1 Department of Mathematics, University of Miami, Coral Gables,
Florida, USA
2 Department of Computer Science, University of Miami, Coral Gables,
Florida, USA

Abstract

The Russian option is a two-party contract which creates a liability for the option
seller to pay the option buyer an amount equal to the maximum price attained by a
security over a specific time period, discounted for the option’s age. The Russian
option was proposed by Shepp and Shiryaev. Kramkov and Shiryaev first examined
the option in the binomial model. We improve upon their results and give a near-
optimal algorithm for price determination.

Specifically, we prove that the optimal exercising boundary is monotonic and
give an O(N) dynamic programming algorithm to construct the boundary, where
N is the option expiration time. The algorithm also computes the option’s value at
time zero in time O(N) and the value at all of the O(N3) nodes in the binomial
model in time O(N2).
Keywords: Russian option, binomial model, dynamic programming.

1 Introduction

The Russian Option is a two-party contract which creates a liability for the option
seller to pay the option buyer an amount equal to the maximum price attained
by a security over a specific time period, discounted for the option’s age. For an
N + 1 step time period 0, 1, 2, . . . , N , the option seller’s liability at time step n,
0 ≤ n ≤ N , is,

L(n) = βn max
0≤t≤n

st
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Optimal exercise of Russian options in the



where st is the security price at time t and β is the discount factor. In this paper
we consider the value of this option under a standard binomial model of security
prices, and give efficient algorithms for value calculation.

The Russian option was proposed by Shepp and Shiryaev [1]. At this time it is
not traded. Their work gives the optimal expected present value and the optimal
exercise strategy under the Black-Scholes market model. Kramkov and Shiryaev
[2] first examined the option in the binomial model of Cox et al. [3]. They present
an O(N2) algorithm for calculating option price at the first time step.

This work gives an O(N) algorithm determining the option price at all time
steps as well as optimal execution and the execution boundary. We also present an
O(N2) algorithm for general determination of option value given option structure
and security price history up to time n, 0 ≤ n ≤ N .

2 Definitions and basic facts

The binomial model, introduced by Cox et al. [3], assumes discrete price
announcements at equal time intervals with each price related to the previous
price by either an up-step or down-step, according to a random process. For si

the security price at time i, the price process is given by,

si+1 = uεisi, εi ∈ { 1,−1 },
with u > 1. The probability of an up-step, εi = 1, is p, independent of i. The
probability of a down-step is q = 1 − p. The existence of a risk-free bond is also
assumed,

bi+1 = (1 + r)bi,

where r > 0 is the bond’s interest rate.
The rational markets theory stipulates that the price sequence si is a martingale,

E(si+1 | si) = (1 + r)E(si).

This determines the martingale measure for the random process,

p =
u(1 + r) − 1

u2 − 1
.

Note that this implies u ≥ (1 + r), that is, that the risky security must return at
least the risk-free rate in order that the martingale measure exist.

The option value and liability depends only on the current time step n, the
current security price sn, and the maximum value s∗n attained by the security in
the time period 0 up to n. The current and maximum price can be expressed as
integers j and k such that sn = ujs0, s

∗
n = uks0. Without loss of generality we

assume s0 = 1. Hence the process can be modeled as a graph V whose nodes are
3-tuples (n, j, k), indicating time step n, current price uj and maximum price uk,
and whose edges indicate up-steps and down-steps labeled with probabilities p and
q, respectively.
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(n, j + 1, max(k, j + 1))
p

↗
(n, j, k)

q

↘
(n, j − 1, k)

Figure 1: Example subgraph of V .

The liability at any node (n, j, k) ∈ V is L(n, j, k) = βnuk. At each time
step but the last, the option’s owner can either exercise and receive the liability or
hold. The expected value of the option at node (n, j, k) is therefore given by the
backwards recurrence,

E(n, j, k) = max
(
βnuk, α(pE(n+1, j+1, max(k, j+1))+qE(n+1, j−1, k))

)

where α = 1/(1 + r) is the discount to present value for one time step. At
the last time step, the owner must exercise. This gives the boundary condition
E(N, j, k) = βNuk, for all j and k.

This recurrence defines values only for those nodes reachable in the graph V
starting from node (0, 0, 0). These are called accessible nodes. Inaccessible nodes
are of no importance and their values are ignored.

Lemma 1 (Node accessibility) The nodes (n, j, k) is accessible if and only if,

0 ≤ k ≤ n ≤ N, −n ≤ j ≤ k, and j + n = 2(k + i)

for some non-negative integer i.

Proof: Let eu be the number of up-steps and ed be the number of down steps,

n = eu + ed, j = eu − ed, therefore n + j = 2eu = 2(k + i).

The integer i is the number of up-steps which do not contribute to attaining
the maximum k. Given appropriate n, j, k and i, access the node (n, j, k) by
first taking k up-steps, then n − k − i down-steps, and finally i up-steps. Since
n + j ≤ 2n, then k + i ≤ n. Therefore the construction is well defined.

We assume that β < 1, else the incentive to hold the option is too strong. The
recurrence insures that for accessible nodes, E(n, j, k) ≥ βnuk. If it is not true
that for accessible nodes this inequality is strict when j = k, then the incentive to
hold the option would be too weak. Assuming the contrary,

βnuk < E(n, k, k)

= α(pE(n + 1, k + 1, k + 1) + qE(n + 1, k − 1, k))

< α(pβn+1uk+1 + qβn+1uk).
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Using the martingale measure for p, this reduces to the following constraints on β,

(1 + u)(1 + r)
u(2 + r)

< β < 1

We have thus proved the following lemma,

Lemma 2 (Option viability) Let (1 + u)(1 + r)/(u(2 + r)) < β < 1, p be the
martingale measure, and (n, k.k) be an accessible node. Then βnuk < E(n, k, k)
for n < N .

For the remainder of this paper, we will assume that β is as required for option
viability and p is the martingale measure.

Lemma 3 (Option monotonicity) Assuming nodes are accessible, E(n, j, k) ≤
E(n, j′, k) if j ≤ j′ and E(n, j, k) ≤ E(n, j, k′) if k ≤ k′.

Proof: Use induction starting at n = N and working towards smaller n. Note that
for (n, j, k) and (n, j′, k) to both be accessible, j′ − j must be even.

3 Analysis of the Russian option

We first prove some technical theorems and they apply them to determine
the exercise boundary. Finally, an efficient algorithm is given to determine the
boundary.

3.1 Induction theorems concerning option value

Theorem 1 (First induction theorem) Suppose (n, j, k) is accessible and l is an
integer satisfying 0 ≤ k + 2l ≤ n. Then (n, j + 2l, k + 2l) is accessible and
u2lE(n, j, k) = E(n, j + 2l, k + 2l).

Proof: We begin by proving that if (n, j, k) is accessible and l is an integer
0 ≤ k + 2l ≤ n then (n, j + 2l, k + 2l) is accessible.

Reduce to the case l = 1. Hence k + 2 ≤ n. Since (n, j, k) is accessible,
0 ≤ k ≤ n ≤ N, −n ≤ j ≤ k and n + j = 2(k + i) for a non-
negative integer i. In fact, because k + 2 ≤ n, i must be positive. Therefore
0 ≤ k + 2 ≤ n ≤ N, −n ≤ j + 2 ≤ k + 2 and n + j + 2 = 2(k + 2 + i′) where
i′ = i − 1 ≥ 0.

We now prove the equality. Reduce to the case l = 1 and proceed by induction
on n. For n = N , the result is immediate, since E(N, j, k) = βNuk.

Assume the theorem for n + 1. We first consider the case E(n, k, k). The
option viability lemma allows us to insert and remove the max() operation in the
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following calculation,

u2E(n, k, k) = u2 max
(
βnuk, α(pE(n + 1, k + 1, k + 1)

+ qE(n + 1, k − 1, k))
)

= u2
(
α(pE(n + 1, k + 1, k + 1) + qE(n + 1, k − 1, k)

)

= α
(
pE(n + 1, k + 3, k + 3) + qE(n + 1, k + 1, k + 2)

)

= max
(
βnuk+2, α(pE(n + 1, k + 3, k + 3)

+ qE(n + 1, k + 1, k + 3))
)

= E(n, k + 2, k + 2).

We consider the final case, E(n, j, k) where j < k,

u2E(n, j, k) = u2 max
(
βnuk, α(pE(n + 1, j + 1, max(k, j + 1))

+ qE(n + 1, j − 1, k))
)

= u2 max
(
βnuk, α(pE(n + 1, j + 1, k) + qE(n + 1, j − 1, k))

)

= max
(
βnuk+2, α(pE(n + 1, j + 3, k + 2)

+ qE(n + 1, j + 1, k + 2))
)

= max
(
βnuk+2, α(pE(n + 1, j + 3, max(k + 2, j + 3))

+ qE(n + 1, j + 1, k + 2))
)

= E(n, j + 2, k + 2).

This completes the induction and the proof.

Theorem 2 (Second induction theorem) Suppose (n, j, k) is accessible and l is
an integer satisfying (N − n) ≥ l ≥ 0. Then (n + l, j + l, k + l) is accessible and
(βu)lE(n, j, k) ≥ E(n + l, j + l, k + l).

Proof: We begin by proving that if (n, j, k) is accessible and l is an integer
0 ≤ l ≤ N − n then (n + l, j + l, k + l) is accessible.

Reduce to the case l = 1. Hence n + 1 ≤ N . Since (n, j, k) is accessible,
0 ≤ k ≤ n ≤ N, −n ≤ j ≤ k and n + j = 2(k + i) for a non-negative
integer i. Therefore 0 ≤ k + 1 ≤ n + 1 ≤ N, −n ≤ j + 1 ≤ k + 1 and
n + 1 + j + 2 = 2(k + 1 + i).

We now prove the inequality. We reduce to the case l = 1 and proceed by
induction on n. The similarity with the proceeding proof allows us to omit some
steps.

For n = N − 1,

βuE(N − 1, j, k) = βu max
(
βN−1uk, α(pE(N, j + 1, max(k, j + 1))

+ qE(N, j − 1, k))
)

≥ βu(βN−1uk) = E(N, j + 1, k + 1).
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Assume the theorem for n + 1. We first consider the case E(n, k, k),

βuE(n, k, k) = βu max
(
βnuk, α(pE(n + 1, k + 1, k + 1)

+ qE(n + 1, k − 1, k))
)

≥ α
(
pE(n + 2, k + 2, k + 2) + qE(n + 2, k, k + 1)

)

= E(n + 1, k + 1, k + 1).

We consider the final case, E(n, j, k) where j < k,

βuE(n, j, k) = βu max
(
βnuk, α(pE(n + 1, j + 1, max(k, j + 1)) +

qE(n + 1, j − 1, k))
)

≥ max
(
βn+1uk+1, α(pE(n + 2, j + 2, k + 1)

+ qE(n + 2, j, k + 1))
)

= E(n + 1, j + 1, k + 1).

This completes the induction and the proof.

Theorem 3 (Third induction theorem) Suppose (n, j, k) is an accessible node
with k > 0. Then (n, j−2, k−1) is accessible and uE(n, j−2, k−1) ≤ E(n, j, k).

Proof: We begin by proving that if (n, j, k) is accessible and k > 0 then
(n, j − 2, k − 1) is accessible.

Since (n, j, k) is accessible, 0 ≤ k ≤ n ≤ N, −n ≤ j ≤ k and n+j = 2(k+i)
for a non-negative integer i. Since k > 0 then n + j − 2 ≥ 0. Therefore
0 ≤ k − 1 ≤ n ≤ N, −n ≤ j − 2 ≤ k − 1 and n + j − 2 = 2(k − 1 + i).

We now prove the inequality. The proof is by induction on n. For n = N the
result is immediate.

Assume the theorem for n+1. We first consider the case E(n, j, k) where j < k,

uE(n, j − 2, k − 1) = u max
(
βnuk−1, α(pE(n + 1, j − 1, k − 1)

+ qE(n + 1, j − 3, k − 1))
)

≤ max
(
βnuk, α(pE(n + 1, j + 1, k)

+ qE(n + 1, j − 1, k))
)

= E(n, j, k).

For j = k,

uE(n, k − 2, k − 1) = u max
(
βnuk−1, α(pE(n + 1, k − 1, k − 1)

+ qE(n + 1, k − 3, k − 1))
)

≤ max
(
βnuk, α(puE(n + 1, k − 1, k − 1)

+ qE(n + 1, k − 1, k))
)
,
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using the first induction theorem,

uE(n + 1, k − 1, k − 1) < u2E(n + 1, k − 1, k − 1) = E(n + 1, k + 1, k + 1),

so,

uE(n, k − 2, k − 1) ≤ max
(
βnuk, α(pE(n + 1, k + 1, k + 1)

+ qE(n + 1, k − 1, k))
)

= E(n, k, k).

This completes the induction and the proof.

3.2 Determining the exercise boundary

In this section we show that the value of a Russian option obtains its liability value
once the difference between the peak security price and current security price,
k − j, differ by at least an integer hn, this integer depending on n. This integer is
called the exercise boundary. The examination of the exercise boundary leads to
an optimal strategy for exercise of Russian options.

Lemma 4 Suppose (n, j, k) and (n, j′, k′) are accessible and k − j ≤ k′ − j′.
Then E(n, j, k) = βnuk implies E(n, j′, k′) = βnuk′

.

Proof: Various cases are argued. First, assume k − j = k′ − j′. Since j and j′

must agree with n mod 2, 2|(j′− j). The result follows by using the first induction
theorem with l = (j − j′)/2.

Now assume k − j < k′ − j′. If 2|(k′ − k) use the first induction theorem with
l = (k′ − k)/2,

u2lE(n, j, k) = E(n, j + 2l, k + 2l) = E(n, j + 2l, k′).

Note k − j = k′ − (j + 2l) < k′ − j′ so j′ < j + 2l. Using option monotonicity,

E(n, j′, k′) ≤ E(n, j + 2l, k′) = βnuk+2l = βnuk′
.

The definition of E(n, j′, k′) implies a lower bound βnuk′ ≤ E(n, j′, k′). Hence
equality holds.

Now assume k − j < k′ − j′ and 2|(k′ − k + 1). If k > 0 apply the third
induction theorem, then the first induction theorem with l = (k′ − k + 1)/2,

u2lE(n, j, k) ≥ u2luE(n, j − 2, k − 1)

= uE(n, j − 2 + 2l, k − 1 + 2l) = uE(n, j − 2 + 2l, k′).

Note k − j = (k′ − 2l + 1) − j < k′ − j′ so j′ ≤ j − 2 + 2l. Using option
monotonicity,

E(n, j′, k′) ≤ E(n, j − 2 + 2l, k′) ≤ u2l−1E(n, j, k) = βnuk+2l−1 = βnuk′
.

Matching the lower bound on E(n, j′, k′). Hence equality holds.
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If k = 0 we must assume n ≥ 2. For the remaining cases, n = 0, 1 the theorem
is trivial. We apply the first induction theorem with l = 1 and the third induction
theorem,

u2E(n, j, 0) = E(n, j + 2, 2) ≥ uE(n, j, 1).

We apply the first induction theorem with l = (k′−1)/2 and, since k− j = −j <
k′ − j′ = 2l + 1 − j′ implies j′ − 2l ≤ j, we can apply option monotonicity,

E(n, j′, k′) = E(n, j′, 2l + 1) = u2lE(n, j′ − 2l, 1)

≤ u2lE(n, j, 1) ≤ u2l+1E(n, j, 0) = βnuk′
,

Matching the lower bound on E(n, j′, k′). Hence equality holds.
This concludes consideration of all cases.

Definition 1 The exercise boundary at n is the least integer hn such that E(n, k−
hn, k) obtains its liability value βnuk, if such an integer exists. The execution
boundary is the maximal sequence of execution boundaries at n starting from some
no and continuing in consecutive n up to N .

The consequence of the previous lemma is that if the execution boundary at n
exists, then E(n, j, k) = βnuk whenever k − j ≥ hn.

Lemma 5 If hn exists then hn′ exists for all n ≤ n′ ≤ N and hn′ ≤ hn.

Proof: Directly from the second induction theorem.

Lemma 6 If hn exists and n < N , then hn+1 exists and 0 ≤ hn − hn+1 ≤ 1.

Proof: For hn = 1 or 0 there is nothing to show. We assume hn ≥ 2.
Since k−j ≥ 2 and (n, j, k) is accessible, so are (n, j, k−1) and (n+1, j+1, k−

1). It is sufficient to show that if E(n, j, k) = βnuk and E(n, j, k− 1) > βnuk−1

then E(n + 1, j + 1, k − 1) > βn+1uj−1.
Arguing by contradiction, assume E(n + 1, j + 1, k − 1) = βn+1uk−1. By

option monotonicity, E(n + 1, j − 1, k − 1) = E(n + 1, j + 1, k − 1) and,

E(n, j, k − 1) = max
(
βnuk−1, α(pE(n + 1, j + 1, k − 1)

+ qE(n + 1, j − 1, k − 1))
)

= α(pE(n + 1, j + 1, k − 1) + qE(n + 1, j − 1, k − 1))

= αβn+1uk−1 < βnuk−1,

where the last inequality is justified by β < 1 ≤ 1 + r = α−1. The contradiction
completes the proof.
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Theorem 4 (Execution boundary) Let,

no = min{n |E(n, j, k) = βnuk for some accessible (n, j, k) }.

The set is non-empty hence the execution boundary exists and is,

hno ≥ hno+1 ≥ . . . ≥ hN−1 = 1 > hN = 0

where 0 ≤ hn − hn+1 ≤ 1.

Proof: Since E(N, j, k) = βNuk the set is non-empty. It is easy to show from the
definition of E(N−1, k−1, k) and the inequality αβ < 1 that E(N−1, k−1, k) =
βN−1uk. Hence hN−1 is at least, and at most, 1.

3.3 Efficient algorithms for optimal exercise

Lemma 7 (Canonical node) Let π(i, j) equal 0 or 1 depending on whether i and
j agree modulo 2 or not, respectively. For every accessible node (n, j, k) there is
an accessible node κ(n, j, k), said to be canonical, defined by,

κ(n, j, k) = (n, π(n, δ) − δ, π(n, δ)) where δ = k − j.

Furthermore, E(n, j, k)/E(κ(n, j, k)) = uk−π(n,δ), where k−π(n, δ) is an even,
non-negative integer. Conversely, for each value of δ, 0 ≤ δ ≤ n, there is a
canonical node.

Proof: Either δ or δ − 1 agrees with n modulo 2, so at most one of (n,−δ, 0) and
(n, 1 − δ, 1) can be accessible. Rearranging one of the accessibility conditions,
δ = n−k−2i for some non-negative integer i. Setting i = �δ/2� and k = π(n, δ)
gives any δ provided 0 ≤ δ ≤ n.

Starting from an arbitrary accessible node (n, j, k), use the first induction
theorem to shift j and k down by an even integer l such that k − l is either 0
or 1. Since δ = k− j is invariant, k− l = π(n, δ), so l = k−π(n, δ). This proves
the lemma.

The practical consequence of this lemma is that for the purpose of tabulating
values of E we can arrange nodes in a triangular table table indexed by n,
0 ≤ n ≤ N , and δ, 0 ≤ δ ≤ n. As an improvement, the table can be truncated
by returning a calculated value for E whenever δ is greater than or equal to the
exercise boundary.

Theorem 5 The algorithm given (see Figure 2) is an O(N2) dynamic
programming algorithm determining E(n, j, k) for all accessible (n, j, k). Since
there are Ω(N2) nodes to determine, the algorithm is optimal. The algorithm gives
the optimal exercise strategy. It is possible to give only the optimal exercise strategy
using this algorithm in O(N) time.

Proof: The algorithm’s correctness and efficiency are easy to show.
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getValue(n, j, k)
delta := k - j ;
if n >= n_o and delta >= h[n]
then return betaˆn * uˆk ;

l = k - pi(n,delta) ;
return uˆl * E[n,delta] ;

initValues(N)
h[N] = 0 ;
n_o = N ;
for n = N-1 downto 0
for delta = 0 to n

k = pi(n,delta) ;
j = k - delta ;
e = alpha *

( p * getValue(n+1,j+1,max(j+1,k))
+ q * getValue(n+1,j-1,k) ) ;

if e < ( betaˆn * uˆk ) then
h[n] = delta ;
n_o = n ;
break ; // next n

E[n,delta] = e ;
// end for delta

// end for n

Figure 2: Dynamic programming algorithm for E(n, j, k).

When the option reaches its liability value, that is, it touches the exercise
boundary, exercise the option. Since by the maximum, the option is worth more
exercised than held.

Only the option boundary is needed to decide the optimal exercise strategy. In
an appendix we show that hno is independent of N , and only a function of the
market structure: α, β and u. Hence a variation of the algorithm which terminates
once no has been found runs in time O(N).

4 Conclusions

We have given a near optimal algorithm for the pricing of Russian options under
the binomial model. We have also given some insight into the price process which
these options follow. For such options to be traded, a risk-neutral hedging strategy
must be found, and this is an interesting area for future research.
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