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Abstract

In this paper, we describe several methods for the valuation of performance-
dependent options. Thereby, we use a multidimensional Black—Scholes model
for the temporal development of the asset prices. The martingale approach
then yields the fair price as a multidimensional integral whose dimension is
the number of stochastic processes in the model. The integrand is typically
discontinuous, though, which makes accurate solutions difficult to achieve by
numerical approaches. However, using tools from computational geometry we are
able to derive a pricing formula which only involves the evaluation of smooth
multivariate normal distributions. This way, performance-dependent options can
efficiently be priced even for high-dimensional problems as is shown by numerical
results.
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1 Introduction

Performance-dependent options are financial derivatives whose payoff depends on
the performance of one asset in comparison to a set of benchmark assets. Here, we
assume that the performance of an asset is determined by the relative increase of
the asset price over the considered period of time. The performance of the asset is
then compared to the performances of a set of benchmark assets. For each possible
outcome of this comparison, a different payoff of the derivative can be realized.
We use a multidimensional Black—Scholes model, see, e.g., Karatzas [1] for the
temporal development of all asset prices required for the performance ranking.
The martingale approach then yields a fair option price as a multidimensional
integral whose dimension is the number of stochastic processes used in the model.
In the so-called full model, the number of processes equals the number of assets.
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In the reduced model, the number of processes can be smaller. Unfortunately, in
either case there is no direct closed-form solution for these integrals. Moreover, the
integrands are typically discontinuous which makes accurate numerical solutions
difficult to achieve.

The main contribution of this paper is the derivation of closed-form solutions
to these integration problems. For the reduced model, two novel tools from
computational geometry are used. These tools are a fast enumeration method
for the cells of a hyperplane arrangement and an algorithm for its orthant
decomposition. The resulting closed-form solutions only involve the evaluation of
smooth multivariate normal distributions which can be efficiently computed using
numerical integration schemes which we illustrate in various numerical results.

2 Performance-dependent options

We assume that there are n assets involved in total. The considered asset gets
assigned label 1 and the n — 1 benchmark assets are labeled from 2 to n. The
price of the i-th asset varying with time ¢ is denoted by S;(¢),1 < ¢ < n.
All stock prices at the end of the time period T are collected in the vector
S = (S1(T),...,S.(T)).

2.1 Payoff profile

First, we need to define the payoff of a performance-dependent option at time 7". To
this end, we denote the relative price increase of stock ¢ over the time interval [0, T']
by AS; := S;(T)/S:(0). We save the performance of the first asset in comparison
to a given strike price K (often ' = S1(0)) and in comparison to the benchmark
assets at time 7" in a ranking vector Rank(S) € {+, —}™ defined by

if 51 > K, if AS1 > AS;,
Rank; (S) = Tote= and Rank;(S) = o t=
— else — else
for i = 2,...,n. In order to define the the payoff of the performance-dependent

option we require bonus factors ag which determine the bonus for each possible
ranking R € {+, —}", see Section 5 for example profiles. In all cases we set
ar = 0if R; = — which corresponds to the option characteristic that a non-zero
payoff only occurs if the stock price if above the strike.

The payoff of the performance-dependent option at time 7' is then defined by

V(S1,T) = aranks) (51(T) — K). (M

In the following, we aim to determine the fair price V'(S1, 0) of such an option at
the current time ¢ = 0.
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2.2 Multivariate Black—Scholes model

We assume that the stock prices are driven by d < n stochastic processes modeled
by the system of stochastic partial differential equations

d
ds; (t) =5, (t) pidt + Z O‘,‘dej (t) 2)
j=1
fori =1,...,n, where u; denotes the drift of the i-th stock, o the n x d volatility

matrix of the stock price movements and W;(t),1 < j < d, the corresponding
Wiener processes. The matrix oo’ is assumed to be positive definite. If d = n, we
call the corresponding model full, if d < n, the model is called reduced.

By It6’s formula we get the explicit solution of (2) by

d
SAT) = Sl(X> = 51(0) exp | ;T — 75 + ﬁZOin]’ 3)
j=1

fori=1,...,nwithg; := 1(c% +...+0%)Tand X = (X1,..., X,) beinga

N(0,I)-normally distributed random vector.

3 Pricing formula in the full model

We now derive the price of a performance-dependent option as a multivariate
integral in the case that the number of stochastic processes d equals the number of
assets n.

3.1 Martingale approach

Using the usual Black—Scholes assumptions, the option price V' (S, 0) is given by
the discounted expectation

V(S1,0) = e "T E[V(S:1,T)] 4)

of the payoff under the unique equivalent martingale measure. To this end, the drift
1; in (3) is replaced by the riskless interest rate r for each stock <. Plugging in the
density function ¢(x) := g 1(x) of the random vector X (note that S = S(X)),
we get that the fair price of a performance-dependent option with payoff (1) is
given by the d-dimensional integral

V(Sl,O):e_TT/ > ar(Si(T) - K)xr(S)p(x) dx  (5)
R Re(+,-yn

where the characteristic function xg (S) is defined to be equal to one if Rank(S) =
R and zero else.
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3.2 Pricing formula

Now, we aim to derive an analytical expression for the computation of (5) in
terms of smooth functions. To proof our main theorem we need the following two
lemmas. For the first Lemma, we denote by ¢, c(x) the Gauss kernel with mean
u and covariance matrix C and by ®(C, b) the multivariate normal distribution
corresponding to g ¢ with limits b = (by, ..., bq).

Lemma 3.1 Letb,q € R% and A € R with full rank, then

/A . e *p(x)dx = €29 99(AAT, Aq — b).

Proof: A simple computation shows that 9 *p(x) = e%qTqap% 1(x) for all
x € R<. Using the substitution x = A~y + q we obtain

/ eqwa(X)dX = eéqTq/ vo,aaT(Y) dy
Ax>b y>b—Aq

and thus the assertion. O

For the second Lemma, we define a comparison relation for two vectors X,y €
R™ with respect to the ranking Rby x >r y & Ri(z; —y;) > 0forl <i <mn.

Lemma 3.2 We have Rank(S) = R exactly if AX >gr b with

lnﬁfrTJr&l

011 O1d 0)
_ _ 01 — 02
011 —021 ... 0O1d — 024
A:=VvT ) ) , b=
011 —=0Onpl ... O1d — Ond 01— On

Proof: Using (3) we see that Rank; = + is equivalent to

d
K
T >K T X, >Ih———rT+0
S1(T) > = \/_Zalj J_nsl(()) rT + o1

Jj=1

which yields the first row of the system AX >gr b. Moreover, for: = 2,...,n,
the outperformance criterion Rank; = + can be written as

d
S1(T)/S1(0) = Si(T)/Si(0) = VT (01— 0i;)X; > 01— &
j=1
which yields rows 2 to n of the system. g

Now we can state the following pricing formula which, in a slightly more special
setting, is originally due to Korn [2].
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Theorem 3.3 The price of a performance-dependent option with payoff (1) is for
the model (2) in the case d = n given by

V(S1,T)= Y  ar(5(0)2(ArAR,~dr) — ¢ " K®(ArAR, —br))
Re{+,—}"

where (br); = R;b;, (dr); := Rid; and (Ar)i; = R;A;; with A and b
defined as in Lemma 3.2. Furthermore, d := b — /T Aoy with ol being the first
row of the volatility matrix o.

Proof: The characteristic function yg (S) in the integral (5) can be eliminated using
Lemma 3.2 and we get

V(S1,0)=e"T Z aR/ (S1(T) — K)p(x)dx. (6)
Re{+,—}n Ax>Rrb

By (3), the integral term can be written as

S1(0)er o /A . VTl x p(x)dx — K p(x)dx.
XZR

Ax>grb

Application of Lemma 3.1 with q = v/T'o; shows that the first integral equals

1q” o1 — 01

ez q/ ©0,AAT (y)dy =e / @o,ARAg(Y) dy =e (I)(ARA%;a —dR).
y>rb—Aq y2dr

By a further application of Lemma 3.1 with q = 0 we obtain that the second

integral equals K®(ArAL, —br) and thus the assertion holds. O

4 Pricing formula in the reduced model

The pricing formula of Theorem 3.3 allows a stable and efficient valuation of
performance-dependent options in the case of moderate-sized benchmarks. If the
number n of benchmark assets is large, the high number 2™ of terms and the high
dimension of the required normal distributions prevents an efficient application
of the pricing formula, however. In this Section, we will derive a similar pricing
formula for the reduced model which incorporates less processes than companies
(d < m). This way, substantially fewer rankings have to be considered and much
lower-dimensional integrals have to be computed.

4.1 Geometrical view

Lemma 3.2 and thus representation (6) remains also valid in the reduced
model. Note, however, that A is now an (n X d)-matrix which prevents the
direct application of Lemma 3.1. At this point, a geometrical point of view is
advantageous to illustrate the effect of performance comparisons in the reduced
model.
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Figure 1: Illustration of the mapping between intersection points {vy, ..., vz} and
polyhedral cells P; := P, for a hyperplane arrangement A3 o (left) and
corresponding reflection signs sy v as well as the orthant Oy, (right).

The matrix A and the vector b define a set of n hyperplanes in the space RY.
Its dissection into different cells is called a hyperplane arrangement and denoted
by A,, 4. Each cell in A,, 4 is a (possibly open) polyhedron P which can uniquely
be represented by a ranking vector R € {4, —}". Each element of the ranking
vector indicates on which side of the corresponding hyperplane the polyhedral cell
is located. Each polyhedron has the representation P = {x € R% : Ax >gr b}.

As the number of cells in the hyperplane arrangement A,, 4 is much smaller
than 2™ if d < n (see Edelsbrunner [3]), we can significantly reduce the number
of integrals which have to be computed by identifying all cells in the hyperplane
arrangement. This way, (6) can be rewritten as

V(S1,0)=e" > aR/P(Sl(T) — K)p(x)dx. (7)

PeA

4.2 Tools from computational geometry

Looking at (7), two problems remain: first, it is not easy to identify which ranking
vectors appear in the hyperplane arrangement; second, the integration region is
now a general polyhedron which requires involved integration rules. To resolve
these difficulties, we need some more utilities from computational geometry.

First, we choose a set of linearly independent directions ey, ...,eq € R to
impose an order on all points in R%. Thereby, we assume that no hyperplane
is parallel to any of the directions. Moreover, we suppose that the hyperplane
arrangement is non-degenerate which means that exactly d hyperplanes intersect in
each vertex. Using the directions e;, an artificial bounding box which encompasses
all vertices can be defined (see Figure 1, left). This bounding box is only needed
for the localization of the polyhedral cells in the following Lemma and does not
implicate any approximation.

Lemma 4.1 Let the set V consist of all interior vertices, of the largest intersection
points of the hyperplanes with the bounding box and of the largest corner point of
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the bounding box. Furthermore, let P, € A,, 4 be the polyhedron which is adjacent
to the vertex v € V and which contains no other vertex which is larger than v with
respect to the direction vectors. Then the mapping v — P, is one-to-one and onto.

Such a mapping is illustrated in Figure 1 (left). The proof of Lemma 4.1 can
be found in our paper [4]. Using Lemma 4.1, an easy to implement optimal order
algorithm can be constructed to enumerate all cells in a hyperplane arrangement.

Note that by Lemma 4.1 each vertex v € )V corresponds to a unique cell
P, € A, 4 and thus to a ranking vector R. We can, therefore, also assign bonus
factors to vertices by setting a, := ar. Next, we assign to each vertex v an
associated orthant Oy. An orthant is defined as an open region in R? which is
bounded by &k < d hyperplanes. To find the orthant associated with the vertex
v, we look at k backward (with respect to the directions e;) points by moving v
backwards on each of the k intersecting hyperplanes. The unique orthant which
contains v and all backward points is denoted by O,. By definition, there exists a
(k x d)-submatrix A, of A and a k-subvector by of b such that the orthant O,
can be characterised as the set

Oy = {xeR?: Ayx >gr by}, (8)

where R is the ranking vector which corresponds to v. Furthermore, given two
vertices v, w € V), we define the reflection sign sy w := (—1)™w where 7y y is
the number of reflections on hyperplanes needed to map Oy, onto P, (see Figure 1,
right). Finally, let V), denote the set of all vertices of the polyhedron P, .

Lemma 4.2 It is possible to algebraically decompose any cell of a hyperplane
arrangement into a signed sum of orthant cells by

X(Pv) = Z SV,WX(OW)7

weVy,

where x is the characteristic function of a set. Moreover, all cells of a hyperplane
arrangement can be decomposed into a signed sum of orthants using exactly one
orthant per cell.

The first part of Lemma 4.2 is originally due to Lawrence [5], the second part
can be found in [4].

4.3 Pricing formula

Now, we are finally able to give a pricing formula for performance-dependent
options also for the reduced model.

Theorem 4.3 The price of a performance-dependent option with payoff (1) is for
the model (2) in the case d < n given by

V(S1,0) = cv(S1(0)2(AVAL, —dy) — e "TK®(A AT, ~by))
vey
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with Ay, by as in (8) and with d being the corresponding subvector of d. The
weights cy are given by

Cy = E Sv,wlw-

wEV: VE Py,

Proof: By Lemma 4.1 we see that the integral representation (7) is equivalent to a
summation over all vertices v € V), i.e.

V(S1,00= T S ay /P (S1(T) — K)p(x)dx.

vey

By Lemma 4.2 we can decompose the polyhedron P, into a signed sum of orthants
and obtain

V(S1,0)=e"" > ay Y sv,w/O (S1(T) — K)p(x)dx.

vey weEVy

By the second part of Lemma 4.2 we know that only c¢,, 4 different integrals appear
in the above sum. Rearranging the terms leads to

V(S1,0)=e"" ) CV/O (S1(T) — K)p(x)dx.

vey

Since now the integration domains O, are orthants, Lemma 3.1 can be applied
exactly as in the proof of Theorem 3.3 which finally implies the Theorem. a

5 Numerical results

In this Section, we present numerical examples to illustrate the use of the pricing
formula from Theorem 4.3. In particular, we compare the efficiency of our
algorithm to the standard pricing approach (denoted by STD) of quasi-Monte
Carlo simulation of the expected payoff (4) based on Sobol point sets, see, e.g.,
Glasserman [6]. We systematically compare the numerical methods

e Quasi-Monte Carlo integration based on Sobol point sets (QMC),

e Product integration based on the Clenshew Curtis rule (P), and

e Sparse Grid integration based on the Clenshew Curtis rule (SG)
for the evaluation of the multivariate cumulative normal distributions (see Genz
[7]). The Sparse Grid approach is based on [8]. All computations were performed
on an Intel(R) Xeon(TM) CPU 3.06GHz processor. We consider a reduced Black—
Scholes market with n = 30 assets and d = 5 processes. Thereby, we investigate
two different choices for the bonus factors ag in the payoff function (1):
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Figure 2: Errors and timings of the different numerical approaches to price the
performance-dependent options of Examples 5.1 (top) and 5.2 (bottom).

Example 5.1 Ranking-dependent option:

m/(n—1) if Ry =+

aR =
0 else,

where m denotes the number of outperformed benchmark assets. If the company
ranks first there is a full payoff (S1(T') — K)™. If it ranks last the payoff is zero.

Example 5.2 Outperformance option:

1 if R=(+,...,+)

Qa =
R 0 else.
A payoff only occurs if S1(T) > K and if all benchmark assets are outperformed.
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In both cases, we use the following model parameters: K = 100, S1(0) = 100,
T =1,r = 5%; o is a 30 x 5 volatility matrix whose entries are uniformly
distributed in [—1/d, 1/d].

Depending on the specific choice of bonus factors, it turns out that often many
weights ¢, are zero in the formula of Theorem 4.3 which reduces the number of
required normal distributions. Furthermore, all vertices v located on the boundary
of the bounding box correspond to orthants which are defined by k < d intersect-
ing hyperplanes. For these vertices, only a k-dimensional normal distribution has
to be computed. In Example 5.1, we have 41 integrals with maximum dimension
2 while in Example 5.2, 31 integrals with maximum dimension 5 arise.

The convergence behaviour of the four different approaches (STD, QMC, P, SG)
to price the options from the Examples 5.1 and 5.2 is shown in Figure 2. There,
the time is displayed which is needed to obtain a given accuracy. One can see that
the standard approach (STD) quickly achieves low accuracies. The convergence
rate is slow and clearly lower than one, though. The integration scheme suffers
under the irregularity of the integrand which is highly discontinuous and not of
bounded variation. The QMC scheme clearly outperforms the STD approach in all
examples. It exhibits a convergence rate of about one and leads to significantly
smaller errors. As expected, the product integration approach (P) performs
only really well in the Example 5.1 which is of low intrinsic dimension. The
combination of Sparse Grid integration with our pricing formula (SG) leads to the
best convergence rates. However, for higher dimensional problems as Example 5.2,
this advantage is only visible if very accurate solutions are required. In the pre-
asymptotic regime, the QMC scheme leads to smaller errors.
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