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Abstract 

For most continuous time models formulated in finance, there is no closed form 
for the likelihood function and estimation of the parameters on the basis of 
discrete data will be based on an approximation rather than an exact 
discretization. For example, the Euler method introduces discretization bias 
because it ignores the internal dynamics that can be excessively erratic.  We view 
the approximation as a difference equation and note that the solution of the 
continuous time model does not satisfy this difference equation. The 
effectiveness of the approximation will depend on the rate at which the 
underlying process is sampled. We investigate how much it matters: can we get 
significantly different estimates of the same structural parameter when we use 
say hourly data as compared with using monthly data under given discretization? 
If yes, then that discretization when applied to a data set in hand, as is done in 
practice, cannot be said to give robust results. We compare numerically the 
application of methods by Yu and Phillips (2001), Shoji and Ozaki (1998) and 
Ait-Sahalia (2002) in the maximum likelihood estimation of the unrestricted 
interest rate model proposed by Chan et al. (1992). We find that reducing the 
sampling rate yield large biases in the estimation of the parameters. The Ait-
Sahalia method is shown to offer a good approximation and has the advantage of 
reducing some of the temporal aggregation bias.      
Keywords:  the discretization method. 

1 Introduction 

The purpose of the paper is to evaluate the performance of different 
discretization approximation to a structure continuous time model formulated as 

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 

Computational Finance and its Applications II  141

doi:10.2495/CF060141



 

a stochastic differential equation and show that the fact that the discretization 
approximation depends on the time interval. For most models formulated in 
continuous time, there is no closed form for the likelihood function and 
estimation of the parameters of the model on the basis of discrete data needs to 
be based on an approximate rather than an exact discretization. This has been one 
of the main issues in formulating and estimating interest rate diffusion models. 
For example, the discretization method used by Chan et al. [6] (CKLS, hereafter) 
is based on the Euler method. However, the Euler method introduces 
discretization bias because it ignores the internal dynamics that can be 
excessively erratic. It therefore motives the main emphasis will be on how to use 
the accurate restrictions to the data (the solution of the stochastic models) to 
study the econometric properties. Our model is specified as a simple first order 
stochastic differential equation system but we allow this system to be driven by a 
constant elasticity of volatility. This model is called the CKLS model in the 
literature of interest rates. The model considered represented some of the well 
known and most frequently used models in practice (Merton, 1973; Vaslek, 
1977; CIR SD, 1985, the geometric Brownian motion (GBM) process of Black 
and Scholes, 1973). Our starting point is to view the discretization as a difference 
equation and to note that the solution of the continuous time model does not 
satisfy this difference equation when the discretization is not exact. This has 
major implications for estimation. With discrete time sampling, we must 
simulate a large number of sample paths along which the process is sampled very 
finely; otherwise, ignoring the difference generally results in inconsistent 
estimates, unless the discretization happens to be an exact one. This is the time 
aggregation problem inherent in the dichotomy between the time scale of the 
continuous time model and that of the observed data. As a result, the 
effectiveness of the discretization will vary depending on the rate at which the 
underlying process is sampled. Since the rate at which we sample the data 
matters when the discretization is approximated, we investigate how much it 
matters: can we get significantly different estimates of the same structural 
parameter when we use say hourly data as compared with using say monthly data 
under given discretization? If the answer is “yes”, then that discretization when 
applied to a data set in hand, as is done in practice, cannot be said to give robust 
results. By Monte Carlo simulations and empirical study our aim is to investigate 
which approximation discretization is most robust to temporal aggregation for 
the interest rates we usually consider. We compare numerically the application of 
methods by Yu and Phillips [12], Shoji and Ozaki [11] and Ait-Sahalia [1] in the 
maximum likelihood estimation of the unrestricted interest rate model proposed 
by Chan et al. [6]. In this paper we look at the effects of systematic sampling, 
where we use observations picked out every n periods. For all estimation 
methods considered in this paper, we find that reducing the sampling rate will 
yield large biases in the estimation of the parameters. The Ait-Sahalia method is 
shown to offer a good approximation and has the advantage of reducing some of 
the temporal aggregation bias. 
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2 The model and the estimation methods  

Following Chan et al. [6] (hereafter CKLS) a one dimensional continuous time 
specification of the interest rate is considered:  

).()())(()( tdBtxdttxtdx rσβα ++=                             (2.1) 

where }0),({ >ttx is the interest rate variable, ,,, σβα and γ are unknown 

structural parameters, }0,{ ≥tBt  is a standard Brownian motion.  
     In practice, one could simulate a discretized process with a discretization step 

.∆  Then one might consider the estimator based on this approximated process. 
The Euler approximation to (2.1) is given by  

e
tutxtxtx ∆++∆++=∆+ )]([)()( βα                          (2.2) 

where ))()(()( tBtBxtBxu tt
e
t −∆+=∆=∆+

γγ σσ is the disturbance term.  
     In principle, we can obtain more and more accurate discretization scheme 
including further stochastic terms from the stochastic Taylor expansion to the 
approximation scheme (2.2). This is because these stochastic terms contain 
additional information about the sample path of the Brownian motion. Despite 
this possibility, we need to stress the importance of the discretization scheme 
because neglect errors introduced as a result of time aggregation. Moreover, the 
approximation scheme (2.2) will not allow us to derive the exact maximum 
likelihood estimator. The Gaussian estimators will be consistent and 
asymptotically normal provided 0→∆ or .∞→N  The size of the 
approximation error in the discretized process is a function of the length of the 
discrete time interval. In other words, the approximation error is smaller for 
shorter time intervals. It is well known that ignoring this bias in the estimation 
process would give rise to inconsistent estimates of the model’s parameters.  
     On the other hand, (2.1) could be interpreted as representing the integral 
equation: 

∫∫
∆+∆+
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For any initial value ),0(x the solution to model (2.1) is thus given by  

.)()()()1()(
0

)(∫
∆

−∆∆∆ +++−=∆+ ττσ γτβββ
β
α dBtxetxeetx      (2.4) 

Equation (2.4) is the exact discrete model. But, (2.4) cannot be used for 
estimation because the last term on the right hand involves the level of the 
process. Along the line of Bergstrom’s method [3], Nowman [10] to assume that 
the volatility of the interest rate change at the beginning of the unit observation 
period and then remains constant and then apply the Bergstrom’s method to 
estimate the parameters of interest. Let t ′be the smallest integer greater than or 
equal to ,t  Nowman considers the following SDE: 
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Then, following Bergstrom ([3], Theroem 2) the form of the corresponding exact 
discrete model of (2.1) can be expressed as:  
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where ),...,1( Ttt =η is assumed to follow a normal and satisfies the 
conditions: 
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Comparing to the approximation scheme (2.4), equation (2.6) allows us to use 
the exact maximum likelihood estimator. This should be help to reduce some of 
the temporal aggregation bias. 
     Also along the line of Bergstrom’s method [3], Yu and Phillips employ the 
Dsmbis, Dubins-Schwarz (DDS) theorem and apply the time change formula to 
cover the residual processes to follow a Normal density. Let the last term in (2.5) 
be )(∆M  and it will be a continuous martingale with quadratic variation: 

∫
∆

−∆
∆ +=

0

2)(22 .)(][ ττσ γτβ dtxeM  

Applying DDS theorem, Yu and Phillips transform )(∆M to DDS Brownian 
motion. This method produces an exact discrete Gaussian model. Comparing to 
the Nowman’s method, which is to equate the observation interval with the unit 
interval and to consider the exact discrete model on the sequence of the equi-
spaced observations, the Yu and Phillips’s method will cause a sequence to be 
non-equispaced observations.   
     Shoji and Ozaki [11] use the Ito formula to transform (2.1) as a diffusion 
process with a nonlinear drift term but a constant diffusion term. They use the 
local linear technique to approximate that new process. Basically, by the method 
of Shoji and Ozaki we will have a linear SDE as an approximation to any 
continuous diffusion, which allows us to derive the exact discretization of the 
continuous diffusion. The exact representation allows us to use the Bergstrom 
methods to estimate the parameters of a continuous time systems from discrete 
data.  
     Alternative estimation method that efficiently takes account of the time 
aggregation bias is Ait-Sahalia’s method [1]. Comparing to the Shoji and Ozaki 
method, to simulate the discreted time observations of the process that is the 
solution of the locally linearization, Ait-Shalia approximates the unknown 
transition density function by Gaussian. Let ].,,,[ γσβαθ = Also based on 
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the Ito formula, Ait-Shalia considers the new process )(ty is observed at the time 
points }0,{ niit ≤≤∆= for ∆  is fixed and defines the increment of )(ty as  
 

)),);0(()0()(()( 2/1 θyhytytz −−∆= −                          (2.9) 
where 
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Then, Ait-Sahalia [1] constructs the random variable )(tz so that its density zp  
can be close to a standard normal density. Following Ait-Sahalia [1] one can use 
the Hermite series expansion up to the J th term to approximate the density 
function zp for fixed .),0(, θy∆  One then can construct the approximation to 
the unknown density function for the diffusion process ).(tx  Ait-Sahalia [1] 
proves that the density of the random variable )(tz is close to the standard 
normal density and the approximation is close to the true density function of 

)(tx  when J ∞→ but the sampling interval ∆  remains fixed. Further, more 
and more accurate approximation to the true density can be obtained provided 
the order of approximation J gets larger and larger in this scheme. Comparing to 
the Euler scheme, we note that the sampling interval is not assumed that 

0→∆ in order to calculate the parameters explicitly.    
     In conclusion, when the sampling time interval is sufficiently small, one 
could expect that the approximation path for (2.1) by the Euler scheme would be 
close to the true trajectories such that these estimates of the parameters could 
converge to the true one. However, when the discretization step is observed 
equidistantly, then the estimates will show different performance depending on 
the frequency of the data. This is the problem of temporal aggregation in 
continuous time econometrics. To overcome this problem we would like to 
derive a discrete time model that will correspond exactly to the underlying 
continuous time process, in the sense that it generates exactly the same data at 
discrete points as does the continuous time model. We thus examine this problem 
of temporal aggregation by discussing several discretization schemes for the 
stochastic process (2.1) and estimation of the parameters of these discretized 
models. Basically, we extend the Monte Carlo results in Shoji and Ozaki [11] 
and Cleur [5]. Both studies only consider the effect of varying the frequency of 
the data on the estimation of parameters. But, Cleur [7] does not discuss the 
existence of the exact discretization of the diffusion equation in (2.1) that takes 
into account time aggregation bias. It is well known that ignoring this bias in the 
estimation process would give rise to inconsistent estimates of the model’s 
parameters. In our empirical studies we will focus on the strategy of discretizing 
equation (2.1), which is the correct representation of the diffusion equation (2.1), 
by solving the stochastic differential equation and then discretizing the solution 
to this stochastic differential equation. See Nowman [10] and Yu and 
Phillips [12]. 
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3 Monte Carlo results 

Our results are follows. 
1. When the frequency of the data is lower, for example using the monthly 

data, the estimates appear to converge toward a value away from the 
corresponding true value, particularly, inaccuracy of the estimates of α and β 
are quite impressive. This asymptotic bias is becoming increasing evident 
for all methods. 

2. For the low frequency data (monthly or weekly data), the estimate of the 
parameters is biased and the rise in the frequency of the data will lead to an 
increase in the bias.  In the simulation of daily data, the discretization bias is 
small by the use of Ait-Sahalia’s J=3 method. This implies that 
discretization bias may not be very important as expected for Ait-Sahalia’s 
J=3 method. This provides some evidences that high frequency data may not 
be particularly important. 

3. In all cases, the biases are serious for empirically relevant of α We also find 
that the bias in for the estimator of the parameters α and β will translate into 
a serious bias for the diffusion parameters σ and γ Instead of the CIR model, 
we use the CKLS model to estimate parameters [α, β, σ, γ]. We still use the 
CIR SR type process to generate the hourly data. Our outcome shows the 
estimates of σ and γ are sensitive to changes in α For example, using        
Ait-Shalais’s method, γ is always downward biased and this is consistent 
with the upward bias in estimated α In magnitude, the downward bias for γ 
stays within the 2%. By contrast, σ is substantially upward biased. For the 
α=6.0 case, the percentage bias for σ in the worse case is large than 40% 
(using Ait-Sahalia’s (J=2) method). To examine whether the bias of the 
estimator of γ is affected by other parameters, we show that the bias in the 
estimator of γ is indeed affected by the parameter α  

4. We compare the MSEs between these three estimation methods by using 
36000 simulated data. Ait-Sahalia J=3 method appears to be more efficient 
than other two methods. Hence, for a small sample size, the                      
Ait-Sahalia’s method would have efficiency gain because that method will 
produce a less bias and a less increase in standard errors.    

5. After 1000 replications of the estimation procedure, we perform the 
Kolmogorov-Smirnov test to compare the distribution of the 1000 estimates. 
Our aim is to examine if these 1000 estimates come from the same 
distribution for two different sampling frequencies. The null hypothesis is 
that two samples come form the same distribution. We compare the 
distributions for hourly / daily, hourly / weekly, and hourly / monthly. 
Because hourly data can provide much precise confidence intervals, we can 
investigate the distorted effects by comparing if the sampling distribution of 
estimates for other sampling frequencies is far from that of estimates for 
hourly data. Hence, 84.8% for the Yu and Phillips method for hourly / daily 
data should be compared to one. Obviously, for the Yu and Phillips method 
and Ait-Sahalia’s J=2 method, the rejection rates are too large. For example, 
for hourly / daily data under both methods the empirical rejection rates are 
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one almost for all cases. This means that the distributions for hourly and 
monthly data are not the same due to the effects of systematic sampling. We 
expect the distorted effects should increase as the extent of the data 
frequency decreases. Hence, for the shoji and Ozaki method and              
Ait-Sahalia’s J=3 method, rejection rates are reasonable because the rates 
increase to one as the data move from hourly /daily to hourly / monthly. 
However, the test results reflect that fact that for the Yu and Phillips method 
and Ait-Sahalia’s J=2 method, the serious distorted effects will occur even 
using high frequency data and therefore these two methods cannot 
effectively eliminate the biases.  

     In addition, as expected in the parameter estimation, our test results also show 
that, for Ait-Sahalia’s J=3 method, the distorted effects are not as strong as the 
Yu and Phillips method. Hence, although Ait-Sahalia’s J=3 method does not 
completely eliminate this sort bias it still can be expected relatively powerful on 
reduction of bias. Although we do not report here, it will be easy to find the 
reduction is not so obvious when using lower frequency monthly data, and the 
reduction will be much small the smaller the sample size and the greater the 
frequency of sampling. Also we show that there is little reduction in bias in using 
the higher frequency weekly data over and above monthly data, and there could 
be a substantial reduction in bias from using daily data for Ait-Sahalia’s J=3 
method.   
     The results by using the Kolmogorov-Smirnov test are consistent with the 
results using the Mann Whitney rank sum test to examine if the variances for two 
sampling frequencies are equivalent and the usual F test to examine if the means 
are equivalent. Also we report the CDF value for the Mann Whitney rank sum 
test and the usual F test. All of our cases in Tables are one, which means that we 
reject the null hypothesis that two samples come from the same distribution.   

4 Empirical results 

Six series of daily and monthly interest rates are used in the empirical study, 
including the Canada rates, the Germany rates and the US rates. Our goal is to 
determine the robustness of discretization methods to different sampling 
intervals. In addition to estimating the models using the entire daily and monthly 
samples, we also use the sampling scheme in the simulation to augment weekly 
and monthly observations with daily data. Then, we repeat the estimations using 
these observations. We estimate the real daily rates and real monthly rate. 
However, we take every 5 daily observations to be the weekly data and every 
4 weekly data to be the monthly data, which forms our augmented monthly data 
in our Monte Carlo study. By using augmented monthly data, we show the           
Ait-Sahalia J=3 method produces estimates that are similar to the ones by using 
the real monthly data. Bu, this is not the case for the Yu and Phillips method. 
The Yu and Phillips method will produce seriously biased estimates when 
estimating α For example, using sampling scheme in our Monte Carlo study, the 
Yu and Phillips method will provide an estimate of α of 49.4331 for the 
Germany case, while it is 18.4542 for real monthly data. However, Ait-Sahalia’s 

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 

Computational Finance and its Applications II  147



 

J=3 method will provide a small estimate for α of 4.4694, which is more consistent 
with the estimate, 4.0620, for the real monthly data. For σ and γ, the performances 
of the Yu and Phillips method for the augmented monthly data and the real 
monthly data are similar to each other. This is because in the Yu and Phillips 
method the Nowman’s procedure is used to estimate σ and γ This result shows 
that Ait-Sahalia’s J=3 method has better performances than the Yu and Phillips 
method, consistent with the findings from the Monte Carlo study.  Furthermore, 
by using augmented monthly data, Ait-Sahalia’s J=3 method will produces a 
small estimate of α and a larger estimate of β comparing to the real monthly data. 
Also all methods show that there is a more distorted effect in the estimate of α 
comparing to the estimates of β, once again consistent with the findings from the 
Monte Carlo study. However, contrary to the findings in the Monte Carlo study, 
Ait-Sahalia’s J=2 method does not results in more distorted effects comparing to 
the Shoji and Ozaki method and the Yu and Phillips method.    

5 Conclusions 

In this paper we compare the estimation performances for the continuous time 
short arte models. We investigate which approximation discretization is most 
robust to temporal aggregation for the interest rates we usually consider. We 
compare numerically the application of methods by Yu and Phillips [12], Shoji 
and Ozaki [11] and Ait-Sahalia [1] in the maximum likelihood estimation of the 
unrestricted interest rate model proposed by Chan et al. [6]. We find that 
reducing the sampling rate yield large biases in the estimation of the parameters. 
The Ait-Sahalia method is shown to offer a good approximation and has the 
advantage of reducing some of the temporal aggregation bias.    
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