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Abstract

In this paper we consider the mean-variance hedging problem of a continuous state
space financial model with the rebalancing strategies for the hedging portfolio
taken at discrete times. An expression is derived for the optimal self-financing
mean-variance hedging strategy problem, considering any given payoff in an
incomplete market environment. To some extent, the paper extends the work of
Černý [1] to the case in which prices may assume any value within a continuous
state space, a situation that more closely reflects real market conditions. An
expression for the “fair hedging price” for a derivative with any given payoff is
derived. Closed-form solutions for both the “fair hedging price” and the optimal
control for the case of a European call option are obtained. Numerical results
indicate that the proposed method is consistently better than the Black and Scholes
approach, often adopted by practitioners.
Keywords: discrete-time mean-variance hedging, options pricing, optimal control.

1 Introduction

The problem of hedging options has systematically been the focus of attention
from both researchers and practitioners alike. The complex nature of most
derivatives has led academics to often simplify the conditions under which
trading occurs, proposing models which, albeit computational and mathematically
treatable, do not capture all of the peculiarities of these instruments. When
modelling the dynamics of an asset price, its derivatives and the corresponding
hedging process, the choices of state space and time parameter are determined so as
to simplify the model’s complexity. However, with respect to hedging, the situation
that more closely follows what is observed in real market conditions is the use
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of discrete times for representing portfolio rebalancing instants, and continuous
state spaces for values possibly assumed by prices. Indeed, decisions regarding
rebalancing the hedged position naturally occur at discrete times, whereas the
smallest possible price variation (“market ticks”) can be more adequately modelled
within a continuous state space framework. It is, therefore, the purpose of this work
to solve, for a given option, the mean-variance hedging problem of a continuous
state space financial model with the rebalancing strategies for the hedging portfolio
taken at discrete times.

Most studies of mean-variance hedging to date have considered the case of
rebalancing strategies taken at continuous time. For discrete-time rebalancing,
various intertemporal mean-variance criteria were analysed by Schäl [2] in the case
of a constant investment opportunity set. A solution for the general problem with
one asset and non-stochastic interest rate, which does not have a fully recursive
structure, was presented by Schweizer [3]. This difficulty was overcome by the
work of Bertsimas [4], who presented a fully recursive dynamic programming
solution for the case of one basis asset and non-stochastic interest rate. Černý [1]
proposed a general and simple recursive solution for the hedging problem with
stochastic interest rate and an arbitrary number of basis assets.

The purpose of this work is to extend the work of Černý [1] to the case where
the dynamics of a risky asset price is represented by an Itô diffusion with constant
parameters. This approach allows us to obtain expressions for both the fair hedging
price (mean-value process) of the option to be hedged, and the optimal control to
be applied at any rebalancing instant. In particular, we derive closed-form solutions
for the case of European vanilla call options which eliminate the recursiveness of
previous models, thus producing considerable computational gains.

The paper is organized as follows. Section 2 presents the basic model and the
proposed method which produces non-recursive expressions for the mean value
process of an option with any given payoff and its corresponding optimal control
at any rebalancing instant. Section 3 applies the methodology described in Section
2 to the case of a European vanilla call option deriving closed-form expressions
for the option value and for the amount of underlying asset to be bought or
sold for hedging purposes, i.e. the optimal control. Numerical results comparing
hedging strategies suggested by the optimal self-financing mean-variance hedging
proposed in this paper and that by the Black and Scholes (B&S) [5] approach are
presented in Section 4. Finally, a summary and brief conclusions are presented in
Section 5.

2 Discrete time, continuous state space mean-variance hedging
strategy

Let t ∈ [0, T c] represent a particular time instant in a continuous-time model,
and τ ∈ {0, 1, · · · , T } represent the corresponding time instant in a discrete-
time model. Consider that the time interval between two consecutive discrete-
time instants is ∆t, and that, for a particular τ whose corresponding continuous-
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time instant is t, we have that T − τ = n, with n being given by n = (T c −
t)/∆t.

Let S(t) denote the price of a dividend-paying asset at time t. We assume
that S(t) follows a geometric Brownian motion described, in the continuous time
setting notation, by the stochastic process below:

S(t + ∆t) = S(t)eσ∆W P (t+∆t)+(µ−ρ− 1
2σ2)∆t, (2.1)

and in the discrete-time setting notation, by:

S(τ + 1) = S(τ)eσ∆W P (τ+1)+(µ−ρ− 1
2σ2)∆t. (2.2)

The parameter µ represents the asset’s expected rate of return; ρ, the asset’s
dividend yield; and σ, the volatility, all assumed to be constant. WP (·) is a Wiener
process under the probability measure P.

In a discrete-time setting, consider a market free of arbitrage opportunities
composed of a risky asset S and a risk-free asset S0, whose value at discrete
time τ is S0(τ). The risk-free interest rate, r, is assumed to be constant, for all
τ ∈ {0, 1, · · · , T }, with S0 and r being related by S0(τ + 1) = S0(τ)er∆t, with
S0(0) = 1.

Let H be a non-attainable derivative, maturing at time τ = T , whose underlying
asset is S. The derivative payoff is H(T ). Assume that a position in H must be
hedged at discrete time instants τ, τ + 1, . . . , T − 1, called rebalancing instants.

Let V be a self-financing portfolio composed of these two assets. The value of
the portfolio at time τ is V (τ), with V (0) being the initial wealth. An optimal
hedging strategy, {u(τ)}τ=0,··· ,T−1 (optimal control law), can be obtained by
solving the mean-variance hedging problem, which gives the best approximation
by means of self-financing trading strategies, with the optimality criterion being
the expected squared replication error.

Defining EP
τ [·] as the conditional expectation operator w.r.t. probability measure

P given the filtration Fτ , the value function to be minimized at time 0, J̃T , is given
by:

J̃T (0) = min
V (0),u0,...,uT−1

EP
0 [(V (T ) − H(T ))2], (2.3)

with V (0) being F0-measurable, and uτ Fτ -measurable, τ = 0, 1, · · · , T − 1.
Let ∆X(·), the discounted gain process of S, be given by:

∆X(τ + 1) =
S(τ + 1)
S0(τ + 1)

+
δ(τ + 1)
S0(τ + 1)

− S(τ)
S0(τ)

, (2.4)

with δ(τ) corresponding to the dividends paid for holding the risky asset S
between discrete-time instants τ and τ + 1.
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The value V (τ), Fτ -measurable, evolves according to the optimal control law,
i.e. it is the portfolio generated by the control policy {u(τ)}τ=0,··· ,T−1. At time
τ = 0, the value of this portfolio is V (0). It can be shown that:

V (τ + 1) = er∆tV (τ) + S0(τ + 1)u(τ)∆X(τ + 1). (2.5)

Under these conditions, the solution of the optimisation problem defined in (2.3)
is, as shown in Černý [1], given by

ũ(τ) = −
EP

τ

{
k(τ + 1)∆X(τ + 1)

(
V (τ)
S0(τ) − H(τ+1)

S0(τ+1)

)}
EP

τ {k(τ + 1)(∆X(τ + 1))2} , τ = 0, · · · , T − 1,

(2.6)
V (0) = H(0), (2.7)

where:

H(τ) = S0(τ)EP
τ

{
mP→Q

T,τ

H(T )
S0(T )

}
, (2.8)

mP→Q
T,τ =

T−1∏
j=τ

mP→Q
j+1,j , (2.9)

mP→Q
j+1,j =

k(j + 1) − EP
j {k(j+1)∆X(j+1)}

EP
j {k(j+1)(∆X(j+1))2}k(j + 1)∆X(j + 1)

EP
j {k(j + 1)} − (EP

j {k(j+1)∆X(j+1)})2
EP

j {k(j+1)(∆X(j+1))2}
, (2.10)

k(τ)
R2

f (τ)
= EP

τ {k(τ + 1)} − (EP
τ {k(τ + 1)∆X(τ + 1)})2

EP
τ {k(τ + 1)(∆X(τ + 1))2} , (2.11)

k(T ) = 1. (2.12)

Extending the work of Černý [1] to the case where the price of a risky asset
price is represented by a lognormal geometric brownian motion with constant
parameters, as in (2.2), we obtain explicit expressions for both the mean-value
process, H(τ), of the option to be hedged, and the optimal control, ũ(τ), to be
applied at the rebalancing instant τ . The main results are given by Theorems 2.1
and 2.2 stated below. Full proofs can be found in Maiali [6].

In what follows we use the following notation:

1. EQ
l,τ{·} is the conditional expectation operator, as defined before. The

subscript l is used just to explicitly show the dependence of the operator on l,
which will be introduced due to the change from the probability measure P
to Q, with Q being a probability measure whose Radon-Nikodým derivative
with respect to P will depend on l. The same holds for ES

l,τ{·} and ET
l,τ{·}.

2. IA(x) represents the indicator function of x w.r.t. the set A.

3. Cp,l is the l-th element of the set Cp, 1 ≤ l ≤ (
n
p

)
, whose elements are

subsets formed by p elements, 0 ≤ p ≤ n, taken from the set {1, · · · , n}.
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4. σl(τ + j − 1) = σICp,l
(j).

Theorem 2.1 Let H(τ) and mP→Q
T,τ be given by (2.8) and (2.9), respectively.

Then, H(τ) can be written as:

H(τ) = e−r(T−τ)∆t
n∑

p=0


an−p

0 ap
1

(n
p)∑

l=1

EQ
l,τ{H(T )}


 , (2.13)

where:

a0 =
e(r−µ)∆t − eσ2∆t

1 − eσ2∆t
, a1 = 1 − a0 =

1 − e(r−µ)∆t

1 − eσ2∆t
, (2.14)

with Q being a probability measure whose Radon-Nikodým derivative is given by:

dQ

dP
= exp


 n∑

j=1

(
σICp,l

(j)∆WP (τ + j) − 1
2
(σICp,l

(j))2∆t

)


= exp


T−τ∑

j=1

(
σl(τ + j − 1)∆WP (τ + j) − 1

2
σ2

l (τ + j − 1)∆t

)
 . (2.15)

Theorem 2.2 Let ∆X(τ +1), V (τ), k(τ +1), and H(τ +1) be given respectively
by (2.4), (2.5), (2.11), and (2.13). Then, the optimal control ũ(τ), given by (2.6),
can be written as:

ũ(τ) =
e−r(T−τ)∆t

∑n
p=0 an−p

0 ap
1

∑(n
p)

l=1(e
(µ−r)∆tES

l,τ{H(T )} − ET
l,τ{H(T )})

S(τ)(e(2µ−2r+σ2)∆t − 2e(µ−r)∆t + 1)

− V (τ)(e(µ−r)∆t − 1)
S(τ)(e(2µ−2r+σ2)∆t − 2e(µ−r)∆t + 1)

, (2.16)

where S and T are probability measures whose Radon-Nikodýn derivatives are
given by:

dS

dP
= exp


 n∑

j=1

(
Λl(τ + j − 1)∆WP (τ + j) − 1

2
Λ2

l (τ + j − 1)∆t

)
 ,

Λl(τ + j − 1) =

{
σl(τ + j − 1) j = 2, · · · , T − τ

σ j = 1,
(2.17)
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dT

dP
= exp


 n∑

j=1

(
Γl(τ + j − 1)∆WP (τ + j) − 1

2
Γ2

l (τ + j − 1)∆t

)
 ,

Γl(τ + j − 1) =

{
σl(τ + j − 1) j = 2, · · · , T − τ

0 j = 1.
(2.18)

3 Application: European call options

Here we apply the results obtained in the previous section to the case in which
the derivative to be hedged is a European vanilla call option. We derive closed-
form solutions for both the mean-value process, H(τ), of the option to be hedged,
and the optimal control, ũ(τ), to be applied at rebalancing instant τ . It should
be noted that their final expressions are extensions of the B&S formulae. These
closed-form solutions eliminate the recursiveness of previously proposed models,
thus producing considerable computational gains. Similar procedures would lead
to closed-form solutions for the case of European vanilla put options.

Numerical analyses are presented in Section 4. As in the previous section, the
main results are presented in the form of theorems, with their full proofs being
found in Maiali [6].

Theorem 3.1 Consider an European vanilla call option whose payoff is given by
H(T ) = (S(T ) − K)+. Equations (2.13) and (2.16) can be written as:

H(τ) =
n∑

p=0

(
(

n

p

)
an−p
0 ap

1[e
[(µ−r−ρ)(T−τ)+σ2p]∆tS(τ)N(dR)

− e−r(T−τ)∆tKN(dQ)]), (3.1)

where:

dQ =
ln(S(τ)

K ) +
(
µ − ρ − 1

2σ2
)
(T − τ)∆t + σ2p∆t

σ
√

(T − τ)∆t
,

dR = dQ + σ
√

(T − τ)∆t, (3.2)

and

ũ(τ) =
e−r(T−τ)∆t

∑n
p=0 an−p

0 ap
1

∑(n
p)

l=1(e
(µ−r)∆tES

l,τ{H(T )} − ET
l,τ{H(T )})

S(τ)(e(2µ−2r+σ2)∆t − 2e(µ−r)∆t + 1)
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− V (τ)(e(µ−r)∆t − 1)
S(τ)(e(2µ−2r+σ2)∆t − 2e(µ−r)∆t + 1)

, (3.3)

where:

ES
l,τ{H(T )} = S(τ)e(µ−ρ)(T−τ)∆t+σ2∆t(ϕp,l+1)N(dU ) − KN(dS), (3.4)

ET
l,τ{H(T )} = S(τ)e(µ−ρ)(T−τ)∆t+σ2∆tϕp,lN(dV ) − KN(dT ), (3.5)

dS =
ln(S(τ)

K ) +
(
µ − ρ − 1

2σ2
)
(T − τ)∆t + σ2∆t(ϕp,l + 1)

σ
√

(T − τ)∆t
,

(3.6)

dU = dS + σ
√

(T − τ)∆t, (3.7)

dT =
ln(S(τ)

K ) +
(
µ − ρ − 1

2σ2
)
(T − τ)∆t + σ2∆tϕp,l

σ
√

(T − τ)∆t
, (3.8)

dV = dT + σ
√

(T − τ)∆t, (3.9)

ϕp,l =




0 if p = 0
p − 1 if p �= 0; 1 ≤ l ≤ (

n−1
p−1

)
p if p �= 0;

(
n−1
p−1

)
< l ≤ (

n
p

)
.

(3.10)

4 Numerical results

Here the results obtained in Section 3 are applied to European call options
maturing in 6 and 12 months. Consider that r = 17% per annum (present level of
Brazilian interest rates), that the current value of the underlying asset is S = 100,
and that it pays no dividend (ρ = 0).

Results for three different strikes are compared, K = 95, K = 100, and
K = 115, corresponding to in-the-money, at-the-money and out-of-the-money
options, respectively. For each possible situation (maturity date and strike) we
observe the effects of different expected rates of return, µ, with µ = 10% and
µ = 20%, different volatilities, σ, with σ = 20% and σ = 40%, and different
number of rebalancing instants, n, with n = 6 and n = 10. Paths of the underlying
asset are simulated according to (2.1). For each path there is a payoff, H(T ),
which is compared with the value of the hedging porfolio at maturity, V (T ).
The hedging error, expressed as the present value of the square root of the mean-
squared difference between the option’s payoff and hedging portfolio at maturity,
is calculated relative to the option’s current value. The procedure is repeated for
two hedging methods: (i) the dynamic programming approach (DP) proposed in
Section 3; and (ii) the B&S approach (delta-hedging). Results for the error incurred
by both methods, as well as the relative error of DP with respect to B&S, are
presented for each combination of parameters. Results for in-, at- and out-of-the-
money call options maturing in 6 and 12 months are given in Tables 1, 2 and 3,
respectively. Hedging errors for both methods (columns “error DP” and “error
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Table 1: K = 95 (in-the-money); r = 17%, S = 100.

T = 6 months T = 12 months

n µ σ error
B&S

error
DP

rel.
error

error
B&S

error
DP

rel.
error

10% 20% 13.07% 12.93% -1.11% 10.33% 10.20% -1.24%

6 10% 40% 35.94% 35.50% -1.21% 28.24% 27.59% -2.31%

20% 20% 8.88% 8.84% -0.41% 6.01% 5.95% -1.09%

20% 40% 32.18% 31.95% -0.71% 25.24% 24.88% -1.43%

10% 20% 12.49% 12.17% -2.50% 10.30% 9.86% -4.32%

10 10% 40% 37.90% 37.40% -1.33% 31.77% 31.04% -2.32%

20% 20% 8.30% 8.29% -0.15% 5.70% 5.67% -0.45%

20% 40% 33.28% 33.19% -0.26% 27.23% 27.07% -0.60%

Table 2: K = 100 (at-the-money); r = 17%, S = 100.

T = 6 months T = 12 months

n µ σ error
B&S

error
DP

rel.
error

error
B&S

error
DP

rel.
error

10% 20% 30.31% 30.06% -0.84% 17.57% 17.37% -1.12%

6 10% 40% 48.33% 47.79% -1.11% 34.31% 33.57% -2.15%

20% 20% 21.71% 21.67% -0.19% 11.64% 11.55% -0.71%

20% 40% 46.53% 46.27% -0.56% 32.23% 31.84% -1.20%

10% 20% 31.32% 30.75% -1.82% 18.95% 18.26% -3.66%

10 10% 40% 52.45% 51.85% -1.16% 39.28% 38.43% -2.19%

20% 20% 21.65% 21.65% -0.02% 11.57% 11.55% -0.24%

20% 40% 49.22% 49.10% -0.24% 35.16% 35.00% -0.46%

B&S”) as well as the DP error relative to that of the B&S approach (column
“relative error”) are presented.

It can be observed that, in all cases, whenever the expected rate of return, µ,
assumes values close to the risk-free rate r (e.g. r = 17% and µ = 20%),
the results from the B&S model approach, but are consistently worse than those
obtained by the DP model, as it should be expected, since in a B&S risk-neutral
setting, an Itô diffusion with rate µ corresponds to a risk-neutral diffusion with
rate r. Conversely, whenever µ and r are apart (e.g. r = 17% and µ = 10%), the
DP model behaves considerably better, as the assumptions of the B&S model no
longer hold.

Since both models are linear approximations for H(·), the results indicate that,
irrespective of the moneyness of the option to be hedged, for a small number of
rebalancing instants (e.g. n = 6), and high volatility (e.g. σ = 40%), both methods
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Table 3: K = 115 (out-of-the money); r = 17%, S = 100.

T = 6 months T = 12 months

n µ σ error
B&S

error
DP

rel.
error

error
B&S

error
DP

rel.
error

10% 20% 65.65% 65.17% -0.73% 37.95% 37.60% -0.95%

6 10% 40% 67.99% 67.40% -0.87% 46.00% 45.21% -1.71%

20% 20% 79.94% 79.84% -0.13% 33.31% 33.24% -0.20%

20% 40% 74.37% 74.20% -0.22% 47.76% 47.44% -0.66%

10% 20% 67.72% 66.59% -1.68% 42.17% 40.93% -2.95%

10 10% 40% 70.81% 70.07% -1.05% 51.79% 50.71% -2.08%

20% 20% 86.55% 86.54% -0.01% 36.27% 36.27% -0.02%

20% 40% 80.19% 80.11% -0.10% 54.01% 53.85% -0.31%

produce significant hedging errors. Nevertheless, even in this situation, it can be
observed that the proposed method outperforms the B&S model. It should be noted
that, as n increases, although results produced by the DP model converge to those
obtained by the B&S model (following the assumption of infinitesimal rebalancing
instants from the latter), the proposed method consistently incurs less hedging
errors than those obtained the B&S approach, apart from results for small n, in
which case both models behave poorly.

The situation that indicates the best relative performance of the proposed method
is the case of small volatilities (see results for σ = 20% in Tables 1, 2 and 3), as
the payoff of the option becomes less unpredictable.

5 Summary and concluding remarks

In this work we have analysed the mean-variance hedging problem of a continuous
state space financial model with the rebalancing strategies for the hedging portfolio
taken at discrete times. We have derived an expression for the optimal self-
financing mean-variance hedging strategy problem, considering any given payoff
in an incomplete market environment. As an application of the proposed method,
we have obtained closed-form solutions for the value European vanilla call options
and for the amount of the corresponding underlying asset to be bought or sold for
hedging purposes (optimal control law).

The results showed that the proposed solution is consistently better than
the B&S delta-hedging approach for all possible combinations of parameters
considered. As expected, the proposed method presents relatively better results,
especially when the market structure does not follow their basic assumptions. The
method is flexible enough with regard to the determination of optimal hedging
strategies to be applied to a broad variety of European-style derivatives and
stochastic price processes of their underlying asset. In particular, our current
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research is concentrated towards: (i) obtaining closed-forms solutions for other
instruments; and (ii) modelling asset prices whose dynamics are represented by
jump-diffusions and/or stochastic volatility models.
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[1] Černý, A., Dynamic programming and mean-variance hedging in discrete
time. Applied Mathematical Finance, 1(11), pp. 1–25, 2004.

[2] Schäl, M., On quadratic cost criteria for option hedging. Mathematics of
Operations Research, 1(19), pp. 121–131, 1994.

[3] Schweizer, M., Variance-optimal hedging in discrete time. Mathematics of
Operations Research, 1(20), pp. 1–32, 1995.

[4] Bertsimas, D., Kogan, L. & Lo, A.W., Hedging derivative securities in
incomplete market: An ε-arbitrage approach. Operations Research, 3(49), pp.
372–397, 2001.

[5] Black, F. & Scholes, M., The pricing of options and corporate liabilities.
Journal of Political Economy, (81), pp. 637–654, 1973.

[6] Maiali, A.C., Stochastic optimal control at discrete time and continuous state
space applied to derivatives. Ph.D. thesis, Escola Politécnica - Universidade
de São Paulo, 2006.

[7] Pham, H., Rheinländer, T. & Schweizer, M., Mean-variance hedging for
continuous processes: New results and examples. Finance and Stochastics,
(2), pp. 173–198, 1998.

[8] Laurent, J.P. & Pham, H., Dynamix programming and mean-variance
hedging. Finance and Stochastics, 1(3), pp. 83–110, 1999.

[9] Schweizer, M., Mean-variance hedging for general claims. The Annals of
Applied Probability, 1(2), pp. 171–179, 1992.

[10] Schweizer, M., Approximation pricing and the variance-optimal martingale
measure. The Annals of Applied Probability, 1(24), pp. 206–236, 1996.

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line) 

118  Computational Finance and its Applications II


