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Abstract 

In this paper, several C++ techniques, such as eliminating temporary objects, 
swapping vectors, utilizing the Matrix Template Library (MTL), and computing 
at compile-time, are shown to be highly effective when applied to the design of 
high performance financial models. Primarily, the idea emphasized is to achieve 
high performance numerical computations by delaying certain evaluations and 
eliminating many compiler-generated temporary objects. In addition, the unique 
features of the C++ language, namely function and class templates, are applied to 
move certain run-time testing into the compiling phase and to decrease the 
memory usage and speed up performance. As an example, those techniques are 
used in implementing finite difference methods for pricing convertible bonds; 
the resulted code turns out to be really efficient. 
Keywords:  C++, high performance, financial modelling, C++ template, Matrix 
Template Library, vector swapping, compile-time computation, convertible bond. 

1 Introduction 

What do Adobe Systems, Amazon.com, Bloomberg, Google, Microsoft 
Windows OS and Office applications, SAP’s database, and Sun’s HotSpot Java 
Virtual Machine have in common? They are all written in C++ (Stroustrup [1]). 
Still, when people talk about high performance numerical computations, Fortran 
seems to be the de facto standard language of choice. 
     To the author’s knowledge, C++ is actually widely used by Wall Street 
financial houses; as an example Morgan Stanley is mentioned by Stroustrup [1] 
on his website. Techniques developed in the past few years, such as expression 
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template (Furnish [2]) and compile-time computation or meta-arithmetic 
(Alexandrescu [3]), has made C++ a strong candidate for high performance 
numerical computations. 
     In this article I discuss four aspects of C++, namely trying to get rid of 
unnecessary temporary objects, swapping vectors for objects re-use, taking 
advantage of the performance gain provided by the Matrix Template Library [4], 
and doing compile-time computations, which are used in combination to achieve 
high performance numerical computation for financial modelling. Sample codes 
throughout this paper are taken directly from the library of a real-world 
convertible bond pricing model implementing finite difference methods. 

2 Watching for temporary objects 

C++ programs use quite a few temporary objects, many of which are not 
explicitly created by programmers (Stroustrup [5], Meyers [6], and Sutter [7]). 
Those temporary objects will drag down the performance tremendously if not 
eliminated. A few examples will make this point clear. 
     A typical step in the pricing process, or commonly known as diffusion on 
Wall Street, takes a list of stock prices and a list of bond prices, which are 
probably represented as vectors of doubles in C++ (or vector<double>) as in the 
following code (with some parameters omitted for simplicity), and returns a list 
of new bond prices: 
 
typedef vector<double> VecDbl; 
 
VecDbl diffuse(VecDbl stocks_in, VecDbl bonds_in) { 
 VecDbl bonds_out; 
 … 
 return bonds_out; 
} 
 
What is wrong with this simple, innocent piece of code? Use too many 
unnecessary temporary objects! 
     Let’s analyze this carefully. First of all, the list of stock and bond prices are 
passed into the function by-value, as is commonly known in C++. When a 
function is called, a temporary copy of the object that passes by-value is created 
by the compiler. In the above code, two temporary objects, one for the list of 
stock prices and the other for the bond prices, are created (and then destroyed 
when the function returns). In a typical situation, the list of stock prices may 
have a length of a few hundred, so it is expensive (in terms of computing time) to 
create and destroy such a temporary object. 
     Further, inside the function, a local object of type vector<double> is used to 
store the values of the new bond prices temporarily. Finally, for the function to 
return a vector<double> object, one more object may have to be created by the 
copy constructor, if the function is used as in the following code: 
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 VecDbl my_vd; 
 … 
 my_vd = diffuse(stocks_in, bonds_in); 
 
Note that the additional object created here could be eliminated by doing the 
function call and the object instantiation in a single step: 
 
 VecDbl my_vd( diffuse(stocks_in, bonds_in) ); 
 
Therefore, depending on how the function is used, one may force C++ to 
construct yet another object! As a result, this simple function creates at least 
three unnecessary yet expensive objects, which can hardly be efficient. 
     To fix the problems in the code, we pass function arguments by-reference or 
by-pointer. Note that normally the list of stock prices is not changed through out 
the whole diffusion, but the prices of the bond are modified at every step (so the 
list of bond prices is used as both input and output as in the following): 
 
void diffuse(const VecDbl & stocks_in, VecDbl & bonds_io) { 
 VecDbl bonds_local; // for implicit finite difference method 
 … 
} 
 
Because no temporary object needs to be created when function arguments are 
passed by-reference, no temporary object is created in the modified code above. 
Let’s say that a typical diffusion takes about a thousand steps, so a total of about 
two thousand objects of vector<double> is eliminated by this simple 
modification! 
     For the explicit finite difference method (Hull [8]), even the local object 
inside the function can be eliminated by the following trick: 
 
        while (iter != last) {       // last == end() -1   
             val_plus = *iter_next++;       // value of next element 
 
             *iter++ = Up * val_plus + Mid * val + Down * val_minus; 
             
             val_minus = val;   // value of previous element 
             val = val_plus;   // value of current element 
        } 
 
Note that two iterators, one points to the current and the other to the next 
element, are used to keep track of the elements in the vector. Therefore, a further 
savings of a thousand objects is achieved. 
     To most C++ programmers, the above is probably obvious. C++ does have 
more subtle surprises for us in term of temporary objects. Look at the following 
standard piece of code seeing in many textbooks: 
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 for (int k = 0; k < N; k++) {…} 
 
Could one see any problem? 
     Temporary object, of course! It may not be obvious, but the postfix increment 
operator actually creates an unused temporary object.  Thus, the prefix increment 
operator shall be used here instead, which does not create a temporary object. 
The savings in this peculiar case is probably negligible, but any performance 
conscious coder should take home the point. 
     As a rule of thumb, prefix increment is preferred over postfix increment; 
unary operator, such as +=, is preferred over its binary counterpart, +, whenever 
possible. Those may not seem to be any big deal, but in order to achieve high 
performance numerical computation, one has to pay special attentions to those 
numerical operators. This point will become even more prominent in the 
following sections. 

3 Re-using vector objects by swapping 

Typically, a two-dimensional array of size 200x1000 (roughly the number of 
price points times the number of steps) for derivatives prices is used in finite 
difference methods (Clewlow and Strickland [9]). In another word, there is 
equivalently one individual vector<double> object for each step of diffusion. 
Normally we are only interested, however, in the final price slide at the valuation 
date. Therefore, is the two-dimensional array necessary? 
     Not at all. Since each step of diffusion involves only two neighbouring states, 
two vector<double> objects are actually enough: 
 
 for (int step = 1; step <= 1000; ++step) { 
  std::swap(bonds, prev_bonds); 
  diffuseOneStep(…, prev_bonds, bonds); 
 } 
 
Note that by swapping and re-using the two objects, a two-dimensional array is 
no longer necessary. Swapping of two vector<double> objects can be very 
efficiently implemented (Stroustrup [5]). Not only the construction of almost a 
thousand more objects is avoided, but also the resource required for the code is 
much lighter (run-time resource for two objects instead of for a thousand 
objects). 

4 Using the Matrix Template Library (MTL) 

The Matrix Template Library is a free, high performance numerical C++ library 
maintained currently by the Open Systems Laboratory at Indiana University 
(MTL website [4]). MTL is based extensively on the modern idea of generic 
programming ([4] and Stroustrup [5]) and designed using the same approaches as 
the well-known Standard Template Library (STL). It is interesting to know that 
as MTL has demonstrated that “C++ can provide performance on par with 
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Fortran” [4], but it may still be surprising to some that “There are even some 
applications where the presence of higher-level abstractions can allow 
significantly higher performance than Fortran” [4]. 
     As a library for linear algebra operations, MTL offers extensive algorithms 
and utility functions. Only one example of using MTL for financial modelling 
will be shown here to make the point, however. The following line of code is 
taken almost directly from the convertible bond model mentioned in the 
Introduction (with slight modifications to simplify the presentation): 
 
 mtl::add(mtl::scaled(mtl::scaled(stocks, cr), df), bonds);   //y += x 
 
where cr and df are scalar variables, and the variables stocks and bonds are of 
type mtl::dense1D<double> (similar to vector<double>) as provided by MTL. 
     What the single line does is this: multiply every stock price in the vector by 
cr, then multiply the results by df, and finally add the results to bonds. Without 
using MTL algorithms, at least three loops would be necessary if the operators 
for addition, multiplication, and assignment were defined conventionally. This 
would be expensive, for it is well-known that it is optimal to perform more 
operations in one loop iteration (Dowd and Severance [10]). Further, more loops 
also mean many more temporary objects needed to be created to store the 
intermediate results of the arithmetic operations, which will slow down the 
computation even more (Furnish [2]). One could of course hand-code the one 
loop that does all the operations in one shot, but that misses the point here, since 
in so doing, which is ugly and error-prone, we lose the beauty of writing simple, 
arithmetic-like code. 
     MTL, however, does all the operations in one loop. Let’s now see how MTL 
achieves this incredible feat. The function mtl::scaled prepares a multiplication 
of a vector by a scalar, but does not actually execute the multiplication. Then the 
result is scaled once more by another mtl::scaled. Again the multiplication is not 
executed. Finally mtl::add does two multiplications and one addition in one loop 
(for each element in the vector). Further note that the mtl::add here utilizes the 
unary operator += instead of the conventional binary operator + and then 
assignment operator; as a result, the temporary object needed by operator + is 
avoided. 

5 Compile-time computation 

Loosely speaking, compile-time computation is also known as static 
polymorphism, meta-programming, or meta-arithmetic, made possible by the 
C++ template mechanism. High performance is achieved by moving certain 
computation from run-time to compile-time, delaying certain computation or 
eliminating unnecessary temporary objects (Furnish [2] and Alexandrescu [3]). 
Further performance enhancement can be gained by coupling meta-programming 
with the C++ inline facility and the so-called lightweight object optimization. 
     What one can do with meta-programming is only limited by one’s 
imagination, as Alexandrescu has aptly demonstrated in his excellent book [3]. 
Again one very simple example will be shown here just to make the point.  
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     Convertible bonds are complicated financial contracts with many parameters.  
To pass all those parameters to the pricing code, a map with keys and values as 
strings are used. The values could actually be int, double, string, or some other 
types. The code has to convert all the values stored in strings to their proper type 
efficiently. How could this be done? 
     One could of course use a series of if-test’s to determine the various types at 
run-time. That is not efficient, however. Or one could handle each value 
individually, but that is not elegant and error-prone. C++ meta-programming in 
fact enables us to do better and do something as the following: 
 
 ReturnType val_lv; // ReturnType can be int, double, etc. 
 findParam(key_in, params_in, val_lv); 
 
Where given a return type, the program will choose the right function to use at 
compile-time. The findParam functions are explicitly defined for each possible 
return type as in the following fashion: 
 
typedef map<string,string> StrPair; 
 
template<class OutType>  // template function 
void findParam(const string & key_, const StrPair & map_, OutType & 
val_out ) {} 
 
template<> void findParam(const string & key_, const StrPair & map_, int 
& val_out ) {   // specialize int type 
 ParamFinderImpl<int>::findParam(stoi, key_,map_, val_out); 
} 
 
template<> void findParam(const string & key_, const StrPair & map_, 
double & val_out ) {  // specialize double type 
 ParamFinderImpl<double>::findParam(stof, key_,map_, val_out); 
} 
 
Note stoi converts a string to an int, while stof to a double. Here the template 
function specialization, or template<> (Stroustrup [5]), is utilized. Further, since 
the template parameter in findParam<int>, for example, can be deduced from the 
type of the relevant function argument, the <int> does not have to be specified 
when to be either defined or called. 
     As a result, the client code for using findParam is very simple and uniform. 
More importantly, since choosing the right version of findParam’s is done at 
compile-time according to the return types specified by the client, the program is 
more efficient. Furthermore, some of the functions could be inlined to improve 
the performance additionally. 
     For completeness, the definition of the class ParamFinderImpl is shown 
below: 
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template<class OutType> 
struct ParamFinderImpl { 
 typedef bool (*p2f)( const string & s, OutType & val_out ); 
 
 static void findParam(p2f func_, const string & key_, const StrPair 
& map_, OutType & val_out ) { 
  StrPair::const_iterator pmi; 
 
  if ((pmi = map_.find( key_ )) != map_.end() )  
   func_( pmi->second, val_out ); 
 }   
}; 

6 Performance estimation 

The convertible bond from Ayache et al.. [11] (see Table 1 below for details) is 
used in the performance test. The AFV model (Ayache et al. [11]) is 
implemented with the Crank-Nicolson method. The diffusion is done daily; in 
another word, there are 1826 time-steps in the diffusion. The state variable (stock 
or bond price) is divided into 281 points. 

Table 1: Convertible bond data used in performance estimation. 

Valuation date 01/01/2005 (mm/dd/yyyy) 
Maturity 01/01/2010 
Conversion ratio 1 
Convertible 01/01/2005 to 01/01/2010 
Call price 110 
Callable 01/01/2007 to 01/01/2010 
Call notice period 0 
Put price 105 
Putable On 01/01/2008 (one day only) 
Coupon rate 8% 
Coupon frequency Semi-annual 
First coupon date 07/01/2005 
Par 100 
Hazard rate, p 0.02 
Volatility 0.2 
Recovery rate, R 0.0 
Partial default η=0.0 
Risk-free interest, r 0.05 

     The C++ code is compiled using Microsoft Visual Studio .NET 2003 with 
optimization flag /O2. The program is executed on a Lenovo Laptop (240 MB 
memory and 1500 MHz Pentium Processor). 
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     For ten runs, the main diffusion loop takes an average of 0.244 seconds to 
finish. Roughly speaking, four bonds could be priced in about one second, or two 
hundred bonds done in less than one minute. With such high speed, traders 
would be able to do portfolio-based optimization in real-time. This is believed to 
be quite efficient. 
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