
C++ techniques for high performance
financial modelling

Q. Liu
School of Management,
University of Electronic Science and Technology of China,
Chengdu, Sichuan, People’s Republic of China

Abstract

In this paper, several C++ techniques, such as eliminating temporary objects,
swapping vectors, utilizing the Matrix Template Library (MTL), and computing
at compile-time, are shown to be highly effective when applied to the design of
high performance financial models. Primarily, the idea emphasized is to achieve
high performance numerical computations by delaying certain evaluations and
eliminating many compiler-generated temporary objects. In addition, the unique
features of the C++ language, namely function and class templates, are applied to
move certain run-time testing into the compiling phase and to decrease the
memory usage and speed up performance. As an example, those techniques are
used in implementing finite difference methods for pricing convertible bonds;
the resulted code turns out to be really efficient.
Keywords: C++, high performance, financial modelling, C++ template, Matrix
Template Library, vector swapping, compile-time computation, convertible bond.

1 Introduction

What do Adobe Systems, Amazon.com, Bloomberg, Google, Microsoft
Windows OS and Office applications, SAP’s database, and Sun’s HotSpot Java
Virtual Machine have in common? They are all written in C++ (Stroustrup [1]).
Still, when people talk about high performance numerical computations, Fortran
seems to be the de facto standard language of choice.
 To the author’s knowledge, C++ is actually widely used by Wall Street
financial houses; as an example Morgan Stanley is mentioned by Stroustrup [1]
on his website. Techniques developed in the past few years, such as expression

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

Computational Finance and its Applications II 87

doi:10.2495/CF060091

template (Furnish [2]) and compile-time computation or meta-arithmetic
(Alexandrescu [3]), has made C++ a strong candidate for high performance
numerical computations.
 In this article I discuss four aspects of C++, namely trying to get rid of
unnecessary temporary objects, swapping vectors for objects re-use, taking
advantage of the performance gain provided by the Matrix Template Library [4],
and doing compile-time computations, which are used in combination to achieve
high performance numerical computation for financial modelling. Sample codes
throughout this paper are taken directly from the library of a real-world
convertible bond pricing model implementing finite difference methods.

2 Watching for temporary objects

C++ programs use quite a few temporary objects, many of which are not
explicitly created by programmers (Stroustrup [5], Meyers [6], and Sutter [7]).
Those temporary objects will drag down the performance tremendously if not
eliminated. A few examples will make this point clear.
 A typical step in the pricing process, or commonly known as diffusion on
Wall Street, takes a list of stock prices and a list of bond prices, which are
probably represented as vectors of doubles in C++ (or vector<double>) as in the
following code (with some parameters omitted for simplicity), and returns a list
of new bond prices:

typedef vector<double> VecDbl;

VecDbl diffuse(VecDbl stocks_in, VecDbl bonds_in) {
 VecDbl bonds_out;
 …
 return bonds_out;
}

What is wrong with this simple, innocent piece of code? Use too many
unnecessary temporary objects!
 Let’s analyze this carefully. First of all, the list of stock and bond prices are
passed into the function by-value, as is commonly known in C++. When a
function is called, a temporary copy of the object that passes by-value is created
by the compiler. In the above code, two temporary objects, one for the list of
stock prices and the other for the bond prices, are created (and then destroyed
when the function returns). In a typical situation, the list of stock prices may
have a length of a few hundred, so it is expensive (in terms of computing time) to
create and destroy such a temporary object.
 Further, inside the function, a local object of type vector<double> is used to
store the values of the new bond prices temporarily. Finally, for the function to
return a vector<double> object, one more object may have to be created by the
copy constructor, if the function is used as in the following code:

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

88 Computational Finance and its Applications II

 VecDbl my_vd;
 …
 my_vd = diffuse(stocks_in, bonds_in);

Note that the additional object created here could be eliminated by doing the
function call and the object instantiation in a single step:

 VecDbl my_vd(diffuse(stocks_in, bonds_in));

Therefore, depending on how the function is used, one may force C++ to
construct yet another object! As a result, this simple function creates at least
three unnecessary yet expensive objects, which can hardly be efficient.
 To fix the problems in the code, we pass function arguments by-reference or
by-pointer. Note that normally the list of stock prices is not changed through out
the whole diffusion, but the prices of the bond are modified at every step (so the
list of bond prices is used as both input and output as in the following):

void diffuse(const VecDbl & stocks_in, VecDbl & bonds_io) {
 VecDbl bonds_local; // for implicit finite difference method
 …
}

Because no temporary object needs to be created when function arguments are
passed by-reference, no temporary object is created in the modified code above.
Let’s say that a typical diffusion takes about a thousand steps, so a total of about
two thousand objects of vector<double> is eliminated by this simple
modification!
 For the explicit finite difference method (Hull [8]), even the local object
inside the function can be eliminated by the following trick:

 while (iter != last) { // last == end() -1
 val_plus = *iter_next++; // value of next element

 *iter++ = Up * val_plus + Mid * val + Down * val_minus;

 val_minus = val; // value of previous element
 val = val_plus; // value of current element
 }

Note that two iterators, one points to the current and the other to the next
element, are used to keep track of the elements in the vector. Therefore, a further
savings of a thousand objects is achieved.
 To most C++ programmers, the above is probably obvious. C++ does have
more subtle surprises for us in term of temporary objects. Look at the following
standard piece of code seeing in many textbooks:

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

Computational Finance and its Applications II 89

 for (int k = 0; k < N; k++) {…}

Could one see any problem?
 Temporary object, of course! It may not be obvious, but the postfix increment
operator actually creates an unused temporary object. Thus, the prefix increment
operator shall be used here instead, which does not create a temporary object.
The savings in this peculiar case is probably negligible, but any performance
conscious coder should take home the point.
 As a rule of thumb, prefix increment is preferred over postfix increment;
unary operator, such as +=, is preferred over its binary counterpart, +, whenever
possible. Those may not seem to be any big deal, but in order to achieve high
performance numerical computation, one has to pay special attentions to those
numerical operators. This point will become even more prominent in the
following sections.

3 Re-using vector objects by swapping

Typically, a two-dimensional array of size 200x1000 (roughly the number of
price points times the number of steps) for derivatives prices is used in finite
difference methods (Clewlow and Strickland [9]). In another word, there is
equivalently one individual vector<double> object for each step of diffusion.
Normally we are only interested, however, in the final price slide at the valuation
date. Therefore, is the two-dimensional array necessary?
 Not at all. Since each step of diffusion involves only two neighbouring states,
two vector<double> objects are actually enough:

 for (int step = 1; step <= 1000; ++step) {
 std::swap(bonds, prev_bonds);
 diffuseOneStep(…, prev_bonds, bonds);
 }

Note that by swapping and re-using the two objects, a two-dimensional array is
no longer necessary. Swapping of two vector<double> objects can be very
efficiently implemented (Stroustrup [5]). Not only the construction of almost a
thousand more objects is avoided, but also the resource required for the code is
much lighter (run-time resource for two objects instead of for a thousand
objects).

4 Using the Matrix Template Library (MTL)

The Matrix Template Library is a free, high performance numerical C++ library
maintained currently by the Open Systems Laboratory at Indiana University
(MTL website [4]). MTL is based extensively on the modern idea of generic
programming ([4] and Stroustrup [5]) and designed using the same approaches as
the well-known Standard Template Library (STL). It is interesting to know that
as MTL has demonstrated that “C++ can provide performance on par with

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

90 Computational Finance and its Applications II

Fortran” [4], but it may still be surprising to some that “There are even some
applications where the presence of higher-level abstractions can allow
significantly higher performance than Fortran” [4].
 As a library for linear algebra operations, MTL offers extensive algorithms
and utility functions. Only one example of using MTL for financial modelling
will be shown here to make the point, however. The following line of code is
taken almost directly from the convertible bond model mentioned in the
Introduction (with slight modifications to simplify the presentation):

 mtl::add(mtl::scaled(mtl::scaled(stocks, cr), df), bonds); //y += x

where cr and df are scalar variables, and the variables stocks and bonds are of
type mtl::dense1D<double> (similar to vector<double>) as provided by MTL.
 What the single line does is this: multiply every stock price in the vector by
cr, then multiply the results by df, and finally add the results to bonds. Without
using MTL algorithms, at least three loops would be necessary if the operators
for addition, multiplication, and assignment were defined conventionally. This
would be expensive, for it is well-known that it is optimal to perform more
operations in one loop iteration (Dowd and Severance [10]). Further, more loops
also mean many more temporary objects needed to be created to store the
intermediate results of the arithmetic operations, which will slow down the
computation even more (Furnish [2]). One could of course hand-code the one
loop that does all the operations in one shot, but that misses the point here, since
in so doing, which is ugly and error-prone, we lose the beauty of writing simple,
arithmetic-like code.
 MTL, however, does all the operations in one loop. Let’s now see how MTL
achieves this incredible feat. The function mtl::scaled prepares a multiplication
of a vector by a scalar, but does not actually execute the multiplication. Then the
result is scaled once more by another mtl::scaled. Again the multiplication is not
executed. Finally mtl::add does two multiplications and one addition in one loop
(for each element in the vector). Further note that the mtl::add here utilizes the
unary operator += instead of the conventional binary operator + and then
assignment operator; as a result, the temporary object needed by operator + is
avoided.

5 Compile-time computation

Loosely speaking, compile-time computation is also known as static
polymorphism, meta-programming, or meta-arithmetic, made possible by the
C++ template mechanism. High performance is achieved by moving certain
computation from run-time to compile-time, delaying certain computation or
eliminating unnecessary temporary objects (Furnish [2] and Alexandrescu [3]).
Further performance enhancement can be gained by coupling meta-programming
with the C++ inline facility and the so-called lightweight object optimization.
 What one can do with meta-programming is only limited by one’s
imagination, as Alexandrescu has aptly demonstrated in his excellent book [3].
Again one very simple example will be shown here just to make the point.

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

Computational Finance and its Applications II 91

 Convertible bonds are complicated financial contracts with many parameters.
To pass all those parameters to the pricing code, a map with keys and values as
strings are used. The values could actually be int, double, string, or some other
types. The code has to convert all the values stored in strings to their proper type
efficiently. How could this be done?
 One could of course use a series of if-test’s to determine the various types at
run-time. That is not efficient, however. Or one could handle each value
individually, but that is not elegant and error-prone. C++ meta-programming in
fact enables us to do better and do something as the following:

 ReturnType val_lv; // ReturnType can be int, double, etc.
 findParam(key_in, params_in, val_lv);

Where given a return type, the program will choose the right function to use at
compile-time. The findParam functions are explicitly defined for each possible
return type as in the following fashion:

typedef map<string,string> StrPair;

template<class OutType> // template function
void findParam(const string & key_, const StrPair & map_, OutType &
val_out) {}

template<> void findParam(const string & key_, const StrPair & map_, int
& val_out) { // specialize int type
 ParamFinderImpl<int>::findParam(stoi, key_,map_, val_out);
}

template<> void findParam(const string & key_, const StrPair & map_,
double & val_out) { // specialize double type
 ParamFinderImpl<double>::findParam(stof, key_,map_, val_out);
}

Note stoi converts a string to an int, while stof to a double. Here the template
function specialization, or template<> (Stroustrup [5]), is utilized. Further, since
the template parameter in findParam<int>, for example, can be deduced from the
type of the relevant function argument, the <int> does not have to be specified
when to be either defined or called.
 As a result, the client code for using findParam is very simple and uniform.
More importantly, since choosing the right version of findParam’s is done at
compile-time according to the return types specified by the client, the program is
more efficient. Furthermore, some of the functions could be inlined to improve
the performance additionally.
 For completeness, the definition of the class ParamFinderImpl is shown
below:

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

92 Computational Finance and its Applications II

template<class OutType>
struct ParamFinderImpl {
 typedef bool (*p2f)(const string & s, OutType & val_out);

 static void findParam(p2f func_, const string & key_, const StrPair
& map_, OutType & val_out) {
 StrPair::const_iterator pmi;

 if ((pmi = map_.find(key_)) != map_.end())
 func_(pmi->second, val_out);
 }
};

6 Performance estimation

The convertible bond from Ayache et al.. [11] (see Table 1 below for details) is
used in the performance test. The AFV model (Ayache et al. [11]) is
implemented with the Crank-Nicolson method. The diffusion is done daily; in
another word, there are 1826 time-steps in the diffusion. The state variable (stock
or bond price) is divided into 281 points.

Table 1: Convertible bond data used in performance estimation.

Valuation date 01/01/2005 (mm/dd/yyyy)
Maturity 01/01/2010
Conversion ratio 1
Convertible 01/01/2005 to 01/01/2010
Call price 110
Callable 01/01/2007 to 01/01/2010
Call notice period 0
Put price 105
Putable On 01/01/2008 (one day only)
Coupon rate 8%
Coupon frequency Semi-annual
First coupon date 07/01/2005
Par 100
Hazard rate, p 0.02
Volatility 0.2
Recovery rate, R 0.0
Partial default η=0.0
Risk-free interest, r 0.05

 The C++ code is compiled using Microsoft Visual Studio .NET 2003 with
optimization flag /O2. The program is executed on a Lenovo Laptop (240 MB
memory and 1500 MHz Pentium Processor).

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

Computational Finance and its Applications II 93

 For ten runs, the main diffusion loop takes an average of 0.244 seconds to
finish. Roughly speaking, four bonds could be priced in about one second, or two
hundred bonds done in less than one minute. With such high speed, traders
would be able to do portfolio-based optimization in real-time. This is believed to
be quite efficient.

Acknowledgement

The work is supported in part by a National Natural Science Foundation of China
grant (No. 70571012).

References

[1] Stroustrup, B., C++ Applications.
public.research.att.com/~bs/applications.html

[2] Furnish, G., Disambiguated glommable expression templates. Computers
in Physics, 11(3), pp. 263-269, 1997.

[3] Alexandrescu, A., Modern C++ Design, Addison-Wesley: Boston, 2001.
[4] MTL, The Matrix Template Library. www.osl.iu.edu/research/mtl/
[5] Stroustrup, B., The C++ Programming Language, Special ed., Addison-

Wesley, 2000.
[6] Meyers, S., More Effective C++: 35 New Ways to Improve Your

Programs and Designs, Addison-Wesley, 1996.
[7] Sutter, H., Exceptional C++: 47 Engineering Puzzles, Programming

Problems, and Solutions, Addison-Wesley, 2000.
[8] Hull, J. C., Options, Futures, and Other Derivatives, 5th ed., Prentice

Hall: Upper Saddle River, New Jersey, 2003.
[9] Clewlow, L. & Strickland, C., Implementing Derivatives Models, John

Wiley & Sons: New York, 1998.
[10] Dowd, K. & Severance, C. R., High Performance Computing, 2nd ed.,

O’Reilly & Associates: Cambridge, 1998.
[11] Ayache, E., P., Forsyth, A. & Vetzal, K. R., The valuation of convertible

bonds with credit risk. Journal of Derivatives 11, pp. 9-29, 2003.

 © 2006 WIT PressWIT Transactions on Modelling and Simulation, Vol 43,
 www.witpress.com, ISSN 1743-355X (on-line)

94 Computational Finance and its Applications II

