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Abstract

The protection of military camps that are subject to attacks by rockets, artillery
projectiles, or mortar grenades (RAM) is currently in the spotlight of Western
nations involved in overseas missions. Due to its worldwide distribution and
good combat properties for guerilla warfare, mortars are likely to be applied and
therefore selected as RAM threat in this paper. For this case, camp safety shall
be ensured by an early warning system and an air defense weapon system using
35 mm Ahead ammunition. For both systems, a key to success is the accuracy
of the sensors used, namely the radar. Therefore after providing the mathematical
background, simulations are conducted in order to find the variations of the hit
point of mortar shells. Moreover, the consumption of Ahead ammunition to engage
and destroy typical 82 mm grenades is estimated. From these results, the suitability
of present radar sensors and air defense systems and the technical requirements of
future weapon systems can be derived.
Keywords: rockets artillery mortar (RAM), 35 mm Ahead ammunition, radar
sensor, exterior ballistics, terminal ballistics, probability calculation, error
propagation, circular error probability, ammunition consumption.

1 Introduction

Accomplished missions of the Western military e.g. in Iraq or Afghanistan in the
recent past have shown that the safety of military camps is not sufficient. This is
because suitable weapon systems protecting the military installations against this
new asymmetric threat do currently not exist. Furthermore, these RAM attacks by
guerillas or terrorists are frequently undertaken from urban area and therefore,
the rules of engagement do usually not allow counterstrikes. Primarily, mortar
grenades of 60 and 82 mm caliber and unguided 107 mm rockets are distributed
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all over the world in great quantities and relatively easy to obtain and thus chosen
for attacks.

This study concentrates on 82 mm mortar grenades as a typical example for the
RAM threat. Two different approaches to increase the camp safety are investigated
and requirements will be given for:

• an early warning system that alerts soldiers depending on the predicted point
of impact of the mortar shell,

• an air defense system that intercepts the shells in a safe distance with Ahead
sub-projectiles forming a fragment cone, fig. 1.

2 Ballistic model

A mathematical model is adopted estimating the ballistic coefficient of the grenade
from four radar tracks of its flight path. As a result, it allows the iterative
calculation of the trajectory from an averaged radar location to either the firing
or the hit point.

2.1 Exterior ballistics of mortar grenades

Since the mortar grenades considered are arrow-stabilized and fired on short
distances up to approximately 8 km, the 2-DOF equations of motion are derived
from Newton’s second law treating the grenade as point mass and incorporating
only gravitation and air drag as external forces. This leads to the system of
differential equations given in a path-dependant form for a right-handed frame
of reference shown in fig. 2:

v′x =
dvx

dx
= −c2(Ma) v(x) (1a)

p′ =
dp

dx
= − g

vx(x)2
(1b)

y′ =
dy

dx
= p (x) (1c)

t′ =
dt

dx
=

1
vx(x)

(1d)

where p = tan θ = vy/vx, v = vx

√
1 + p2, vx – x-component of velocity, vy

– y-component of velocity, g – acceleration due to gravity (g = 9.81 m/s2), t –
computed time of flight, θ – quadrant elevation, c2(Ma) – coefficient of air drag
depending on Mach’s number.

2.2 Trajectory determination by radar measurements

A well-known procedure to experimentally determine the projectile’s air drag is
adopted to estimate the ballistic coefficient [1]. This coefficient is an essential
input parameter solving eqns. (1) numerically in order to calculate the trajectory.
It is iteratively computed starting at point B determined by radar measurements to
the hit point, see fig. 3.

To estimate the ballistic coefficient it is assumed that the velocity depending
part of the air drag is known by an experimentally determined reference function
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Figure 1: Fragment cone.
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Figure 2: Inertial reference frame.

and the part depending on the atmosphere is considered as constant. Therefore,
the term that depends on the projectile itself needs to be determined and is called
ballistic coefficient c.

The drag coefficient c2 (c can simply be derived from it) is determined by the
drag function FW = ρ

2 cW v2A, which corresponds to the difference in kinetic
energy in A and B and refers to the distance xAB:

c2 =
aW

v2
m

, (2)

where aW = 1
2 (v2

xA
− v2

xB
)/ xAB is the deceleration and vm = 1

2 (vxA + vxB )
is the averaged horizontal component of the projectile’s velocity. The horizontal
distance of the averaged radar locations A and B is determined geometrically by
xAB =

√
(xB − xA)2 + (zB − zA)2.

The velocities and coordinates in x and z at the locations A and B are calculated
by two tracks of a monopulse radar, respectively. Due to the specific form of
eqns. (1), only horizontal components of the velocity and the horizontal distance
between A and B are required. In another step, these radar tracks xi, yi, zi (i =
1 . . . 4) are linked to measuring quantities of radar azimuth α, elevation ε, and
time t.

3 Error propagation

The methods of error propagation are applied to the model in Section 2 in
order to find variations of the point of impact depending on the sensor accuracy,
i. e. variations in range, deflection, and the circular error probability (CEP). All
systematic measuring errors shall be eliminated by calibration or adjustment.
Thus, the measurements of the radar azimuth, elevation and time are subject to
random errors. It is assumed that these random errors are normally distributed
with µ = 0 as mean value and the standard deviations σα, σε, and σt are given by
the measuring devices. For a radar with rotating antenna its angular velocity ω is
also subject to errors with σω as standard deviation.
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Figure 3: Radar reference frame with trajectory of mortar shell.

3.1 Variations of the predicted point of impact

As described, the ballistic coefficient c is used to determine the trajectory and
point of impact. Hence, errors of the radar measurements are propagated by the
ballistic coefficient to the hit point and determine its desired variation. In order to
calculate the variation in range, the standard deviation of the ballistic coefficient
σc is computed with the random errors of azimuth, elevation, and time by applying
the laws of propagation of uncertainties:

σc =

√(
∂c

∂xAB

)2

σ2
xAB

+
(

∂c

∂vxA

)2

σ2
vxA

+
(

∂c

∂vxB

)2

σ2
vxB

(3)

where σxAB , σvxA
, and σvxB

are computed from given σα and σt:

σxAB =

√√√√ 4∑
j=1

(
∂xAB

∂αj

)2

σ2
α , σvxA

=

√√√√ 4∑
j=1

(
∂vxA

∂αj

)2

σ2
α +

2∑
k=1

(
∂vxA

∂tk

)2

σ2
t ,

and

σvxB
=

√√√√ 4∑
j=1

(
∂vxB

∂αj

)2

σ2
α +

4∑
k=3

(
∂vxB

∂tk

)2

σ2
t .

The deviation of the angular velocity can be easily calculated with σt

σω =
2π

t2
σt =

ω2

2π
σt . (4)

Subsequently, the approach of varying failure parameters can be used to
calculate e.g. N = 1000 normally distributed random quantities of the ballistic
coefficient ci (i = 1 . . .N) with the mean value µc and standard deviation σc.
These quantities are taken to determine the hit points xi by solving the system of
differential equations (1) numerically.

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 45,
 www.witpress.com, ISSN 1743-355X (on-line) 

216  Computational Ballistics III



In order to compute the variation in range with these x-coordinates of the hit
point, the averaged quadratic deflection µ is determined [1]

µ =

√∑N
i=1 λ2

i

N − 1
(5)

where λi = xi − xm is the so-called apparent error and xm = 1
N

∑N
i=1 xi is an

averaged point of impact.
Given µ and the u-quantile of the normal distribution, the variation in range of

the hit point lP at P% confidence level (C. L.) is calculated by [1]

lP = 2 u µ = 2 PER . (6)

With the given errors of time and azimuth of the radar sensor, the
variation in deflection is directly calculated based on the locating geometry
zi = Ri sin αi. Considering the worst case, the standard deviation σz =√

sin2 αi σ2
R + R2

i cos2 αi σ2
α reaches its maximum value for αi = π

2 and can
be reduced to σz = σR. The range error of a radar is determined with the speed of
light c0 by σR = c0

2 σt.
Similar to eqn. (6), the variation in deflection bP is determined by

bP = 2 u σz = 2 PED . (7)

As final result, the CEP of the predicted hit point is determined with the
variations in range and deflection. Gilles [2] introduces a procedure to compute
the CEP on the desired C. L. with the standard deviations in x and z as well as
the belonging covariance cov(x, z). As input parameters, the x-coordinates are
already calculated, while the z-coordinates are N = 1000 normally distributed
random quantities generated with µz = 0 and σz = σR.

3.2 CEP simulations

For the following simulations, the commissioned radar systems MWRL-SWK
(a Russian air surveillance radar for airports; σα = 0.033 deg , σR = 10 m, in
RBS mode) and COBRA (a counter battery radar by Germany, France, and UK;
σα = σR/R = 0.191 deg , σR = 50 m, system specification) may serve as typical
examples (all radar and ammunition data throughout this paper are public domain).

An 82 mm-grenade with propellant charge O-832, No. 6 launched with M1937
is chosen as RAM threat with the data v0 = 211 m/s, cnom = 2.11 m2/kg, and
m = 3.31 kg.

Furthermore, the following data is given:

ω = 90 deg/s , α1 = 145 deg (MWRL-SWK);

α1 = 145 deg , α2 = 132, 7 deg , α3 = 114, 6 deg , α4 = 91, 2 deg (COBRA);

xAP = −2040 m , zAP = 1000 m .
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The general simulation results are shown in fig. 4, while the data for the selected
radar sensors are tabulated in tab. 1 and integrated in fig. 4 for confidence levels of
50%, 90%, and 99%. Designing an early warning system for military camps, the
estimation of CEP = f(σα = σε, σt) allows the definition of the edge length of
plane squares in order to enable specific areal warnings to soldiers. Since a clear
threat direction is usually unknown, the camp shall be divided into squares with its
edge length given by the CEP

lP = �2 CEP � . (8)

For a very precise radar system like MWRL-SWK, its edge length is already
46 m at 50% C. L. and 98 m for 90% C. L. These distances cannot be covered in
such short advance warning times of roughly 10 s. It also becomes clear that the
COBRA radar is insufficient for this task.

Table 1: Results of simulations for selected radar systems.

ccal. in m2/kg σc in m2/kg CEP in m

C. L. in % - 68.3 50.0 90.0 99.0

MWRL-SWK 2.187 0.070 22.6 48.7 75.1

COBRA 2.187 0.402 134.5 305.2 471.7

4 Ammunition consumption calculations

Intercepting a RAM target successfully requires fulfilling two conditions: at first,
the kinetic energy of the sub-projectiles is sufficient to destroy the mortar grenade
and secondly, at least one pellet hits the shell. For this purpose, 35 mm x 228 Ahead
ammunition is examined consisting of Nf = 152 sub-projectiles and featuring
fuze programming. Since the attempt of deflecting the grenade from its trajectory
with the momentum of a sub-projectile is practically not promising due to the mass
difference of factor 102, this study concentrates on the physical destruction of the
mortar grenade.

4.1 Minimum energy for destruction of mortar grenades

The minimum energy to destruct a grenade is compounded by the kinetic energy
to penetrate the shell and the potential energy to activate the explosive. At first, the
well-known formula of de Marre [3] is resolved for the desired minimum impact
velocity vmin of an sub-projectile in order to penetrate a armored steel plate with
thickness D (in dm)

vmin(γ) =
B d0.75

f D0.7

m0.5
f cosnγ

(9)
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Table 2: Minimum energy destructing typical Russian mortar grenades.

caliber dM in mm 82 107 120 160 240

Dmax in mm 10.2 16.5 19.1 21.8 39.3

Emin in J γ = 0 deg 1160 2257 2756 3335 7563

Emin in J γ = 30 deg 1778 3467 4236 5126 11636
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where df – caliber of sub-projectile (df = 5.8 10−2 dm, estimated), mf – sub-
projectile’s mass (mf = 3.3 10−3 kg), B – empirical factor (B = 2000, averaged
value), γ – angle of impact (measured from plate’s normal) and n = 1.5 [3]. For
this case, the maximum thickness of an 82 mm shell is set for D.

The energy to ignite the grenade’s explosive is calculated with the impact
sensitivity for TNT mh = 1.5 kg m and the acceleration due to gravity. Finally,
the overall minimum energy is

Emin(γ) =
mf

2
v2

min(γ) + mh g (10)

and is shown for several Russian mortar grenades and impact angles of γ =
0 deg , 30 deg in fig. 5 as well as tab. 2.

Ideally, the internal energy Ei provided through an rigid body impact of the
sub-projectile with the grenade needs to be greater than the minimum energy
Emin = f(dM , γ) given in tab. 2. Due to the small amount of HE, the sub-
projectiles are not accelerated after ignition. Therefore, the velocity of a sub-
projectile is calculated with the velocity of the Ahead projectile at time of ignition
and decreased on its flight path because of air drag.
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4.2 Kill probability

In order to obtain a high kinetic energy for destruction, a frontal attack by an Ahead
sub-projectile is considered as ideal case due to the high velocity difference of the
sub-projectile and the grenade. Hence, the target area AT is calculated with the
caliber radius of the shell. However, the chance to hit the fuze of the grenade in
order to ignite it is not considered in this paper.

Calculating the hit probability of an sub-projectile at first, it is assumed
• the cannon is calibrated (µy = µz = 0),
• the ballistic deviation of cannon and ammunition is σy = σz = σb,
• the hit pattern in Y and Z are regarded as independent (ρ = 0).

Thus, the probability pHF to hit a circle area in a Y -Z-plane with radius RM

with a single sub-projectile is based on the normal distribution [3]

pHF = 1 − e
− R2

M
2(u σb)2 . (11)

Since the target has also a dimension in the X-Y -plane, the hit probability
pHt in this plane is determined with the Gaussian error function and the relative
target length xrel = lM/σx applying the distribution function Φ of the normal
distribution

pHt = erf(x) = 2Φ(
√

2x) − 1
2

(12)

where x is the input parameter determined as follows [1]:

x =
u√
2

lM
σx

where lM is the grenade’s length and the deviation σx =
√

σ2
xR + σ2

xG consists
of the converted time deviation of the radar σxR = c0

2 σtR and the converted time
resolution of the fuze σxG = vG σtG (vG – velocity of Ahead projectile). Finally,
the desired hit probability of a single sub-projectile with the above probabilities
being independently is

pH = pHF pHt . (13)

A single effective sub-projectile shall be able to destruct a grenade. Thus, the
destruction probability is calculated with the internal energy Ei [3]

pk|H = 1 − e
− Ei

E0 , (14)

where E0 is given by the minimum energy Emin(γ) at γ = 0 deg.
In conclusion, the kill probability of a single sub-projectile is

pK = pH pK|H . (15)
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Figure 6: NS = f(σα, σt) for 50% and 99% C. L. (∗ – MWRL-SWK).

4.3 Number of rounds

Calculating the kill probability of Nw effective sub-projectiles hitting the target
area AT , it is assumed that the base area of the fragment cone AE equals the area
of the radar CEP ACEP (see fig. 1):

AE(P ) = ACEP (P ) = π (RR u σα)2 , (16)

where RR is the distance radar – located grenade and σα is the radar’s azimuth
deviation assuming σα = σε. ACEP is valid for a given probability P (via quantile
u) that the grenade is located within this area.

The required probability that at least one out of Nw sub-projectiles hits and
destructs the target is given by [3]

pK,Nw(P ) = 1 − (1 − pK)Nw(P ) , (17)

where Nw(P ) = ρf (P )AT = Nf

AE(P )AT . This leads to the wanted ammunition
consumption, i. e. the number of rounds NS to destroy the target with an overall-
kill probability P

NS(P ) =
⌈

1
pK,Nw(P )

⌉
. (18)

4.4 Simulation results

This subsection contains the simulation parameters and results to battle an 82 mm
grenade with Ahead ammunition strongly depending on the radar errors. The battle
distance is supposed to be 1000 m. Estimating the velocity of an Ahead sub-
projectile at this point and considering the slowest trajectory velocity of an 82 mm
shell fired on maximum distance, the internal energy Ei is 1580 J. Hence, the
destruction probability pk|H is 74.4%.
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Table 3: Simulation results for MWRL-SWK radar.

C. L. in % ACEP in m2 hK in m pK in % ρf in 1/m2 Nw NS

50 0.47 2.1 1.3 321 1.7 46

90 2.82 5.2 3.2 54 0.3 110

99 6.91 8.1 5.0 22 0.1 171

In addition to the parameters already given, the quantities are as follows:

lM = 329 mm , σb = 0.3 mil = 0.0169 deg , σtG = 2 ms , RR = 1000 m.

For several overall-kill probabilities P , the results are shown in fig. 6 and in
tab. 3. They reveal that even with a precise radar like MWRL-SWK an ammunition
consumption NS < 100 can be obtained only for probabilities P � 90%.
Furthermore, the distance of the point of ignition to the impact point needs to
be short enough such that the sub-projectile’s kinetic energy exceeds the minimum
energy of Emin = 1160 J. This condition is not fulfilled for P = 99% in tab. 3.

5 Conclusions

The protection of military camps underlying the threat of attacks by mortar
grenades is studied by implementing an early warning system and an air defense
system to destroy an approaching shell. The basic mathematical principles are
given in order to evaluate or design sensors and ammunition with preformed or
natural fragments as well. The study yielded the following most relevant results:

• Determining the CEP = f(σα, σt) in order to define the edge length
of plane warning squares in the military camp, the sensor precision is the
bottleneck. Even a very precise radar system like MWRL-SWK (σα = 2′,
σR = 10 m) provides edge lengths of almost 50 m at 50% and 100 m at 99%
C. L. This is impractical considering warning times in a scale of 10 s.

• Therefore, a frontal attack of 82 mm mortar grenades with a cloud
of 152 sub-projectiles originated from 35 mm Ahead ammunition is
investigated. However, the ammunition consumption at 99% C. L. amounts
to 171 shots. The low initial velocity of the sub-projectiles associated with
a small mass, a strongly limited number of sub-projectiles, and a very small
cone angle β of approximately 10 deg restricts the kinetic energy and the
hit probability severely. For these reasons, the Ahead ammunition is hardly
suited for this application.

• The artillery radar COBRA is completely inappropriate as sensor for both
supposed systems.

Considering decisive follow-on tasks in this field, the application of large-
caliber HE projectiles instead of Ahead ammunition shall be investigated. In
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addition, the complex combat procedure with detection, tracking, fire control, and
interception should be simulated for different threat scenarios.
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