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Abstract

In fire control systems using numerical trajectory integration, safety checks and
hit probability information still is based on empirical parameters. The need for a
modern and precise security testing on a defined level of confidence and tailored
hit probability computation were the motivation to develop the technology outlined
in this paper. The methods are based on trajectory calculation using a modified
point mass model that considers drag, lift, Magnus and Coriolis forces, gravity and
all atmospheric influences. The Gaussian law of the propagation of the stochastic
error within a system of dependent and independent variables was used to generate
a vector of standard deviations for all error afflicted parameters every integration
time step. This approach leads to a flightpath dataset of the projectile, not only
giving information about position and velocity, but also about their standard
deviations. The check for a minimum height over ground or distance to no-fly
zones is very easy and can be performed with a changing level of confidence
throughout the trajectory. Hit probability calculation is done automatically and
considers all current data that has influence on the projectile’s trajectory.
Keywords: error propagation, safety checks, numerical integration, crest
clearance, hit probability, multivariate statistics.

1 Introduction

In fire control systems using numerical trajectory integration, safety checks and
hit probability information still is based on empirical parameters. Even modern
systems using time consuming routines on calculating numerical derivatives for a
trajectory perturbation in order to gain hit probability information. The need for a
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precise security testing on a defined level of confidence and tailored hit probability
computation were the motivation to develop the technology outlined in this paper.
The methods are based on trajectory calculation using a modified point mass model
that considers drag, lift, Magnus and Coriolis forces, gravity and all atmospheric
influences.

2 Fire control software

Modern fire control software mostly is strongly unitized to cover a wider range of
different weapon systems or ammunition types. This leads to a data-handling that
has to be taken into consideration. Trajectory calculation has to meet the demands
on both, computation time and accuracy. That influences the numerical method
and the physical model used.

2.1 Trajectory calculation

The trajectory calculation used in modern Fire Control Software is mostly based
on a set of differential equations (DEQ) incorporating a modified point mass model
[1, 2]. These differential equations are solved by a numerical integration scheme
to generate a flightpath containing the important information such as position,
velocity and angle for each time step from leaving the muzzle to the impact.

Mach Number

Air DensityHeightVDrag

CD Vel of Sound

V

Figure 1: Example for the Dependencies of integration parameter Drag.

Common integration schemes used are explicit or implicit single-step methods,
such as Heun or Runge-Kutta. Due to the good conditioned DEQs faster schemes
without error-estimation were preferred to keep computation time short. The
algorithms described below are developed for an Euler scheme, but were also
successfully tested on a Heun scheme.

During numerical integration of the trajectory parameters change, depending
on current projectile position and velocity. Atmospheric data gained from
measurements or meteorological prognosis depends strongly on the height over
ground. Ballistic coefficients may depend on the Mach number, which on its part
depends on the actual speed of sound and the projectile velocity. There are many
parameters in the DEQs of motion that depend on the results of the last performed
integration step or that are linked to external data sets (e.g. fig. 1).
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2.2 Requirements for safety checks

In modern fire control software an important part is security. Therefore, a
wide range of tests were provided to check the interaction of a trajectory with
other objects or zones. These zones can vary between traditional checks against
trajectory-ground interaction and checks against violation of temporary no-fly
zones. Today’s checks are mostly performed by perturbation mathematics and their
application on the trajectory [3]:
Adding a perturbation on one initial condition and calculating the difference of
the hit point allows to compute the numerical partial derivative with respect to
the initial condition perturbed. The linear combination of these partial derivatives
multiplied with their variances leads to the absolute error probability usually given
as a CEP. The mathematical background is the Gaussian law of the propagation of
the stochastic error [4]:
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This approach is also suitable for crest clearance checks:
Two perturbed trajectories were calculated which enclosure the original trajectory.
One of this new trajectories - the lower one - is used for checking against projectile-
ground-interaction. The higher one is obsolete.

Another approach is to rise the ground to a safety level needed and then check
the original trajectory against projectile-ground-interaction using the raised ground
level.

Both algorithms can only handle defined and fixed error budgets for a limited
number of parameters because every parameter to be perturbed causes an
additional complete trajectory calculation. These parameters are limited to initial
conditions of the numerical integration and no dependencies were taken into
consideration.

3 A measurement approach

In measurement theory basically all measurands are error afflicted. These errors are
quantified by two characteristic values: mean value of the sample (x̄) and standard
deviation of the sample (sx). All error afflicted measurands are assumed Gaussian
distributed.

Looking at the parameters affecting a trajectory integration, three main
categories can be differentiated:

1. Parameters directly affecting the initial conditions, such as gun position, gun
height, muzzle velocity, azimuth and elevation.

2. Parameters indirectly affecting the initial conditions, like propellant
temperature and barrel abrasion.

3. Parameters directly affecting the projectile in flight containing all
atmospheric properties depending on height (temperature, air density, air
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pressure, wind, speed of sound) and all projectile depending coefficients
(drag, lift, Magnus and Coriolis forces, spin, yaw).

From a measurement point of view, all these parameters are error afflicted and
therefore, every parameter can be quantified by its mean and standard deviation.
The aim is to get a statement for the certainty - or better uncertainty - of the
projectile’s position and velocity. The approach is to propagate the error of the
position and the velocity vector not by perturbing the initial conditions, but
by recalculating the standard deviation of position and velocity vector every
integration time step.

Figure 2: Resulting fuzzy position of a projectile.

The main advance is that a data set of projectile’s uncertainty for each point of
the trajectory calculated is produced. Changing standard deviation of error afflicted
parameters during the trajectory is possible and therefore assures a good flexibility.
This computation is extraordinary fast compared to an equivalent perturbation
approach.

4 Error propagation

In general, the Gaussian Law (eqn. (1)) covers most of normal measurement cases.
But because modern fire control softwares integration methods and object handling
splits up the computation of position and velocity vector into subroutines, a more
general definition of the error propagation has to be used. The variances and their
depending variables to be added at the end of the calculation cannot be assumed to
be independent anymore. To consider these dependencies the general law for error
propagation has to be used [5]: Let f(x1, x2, . . . , xn) be a function which depends
on n variables x1, x2, . . ., xn. The uncertainty of each variable is given by σxj

multiplied with the quantile for a level of confidence of α (remark, that in military
applications times of PE is the common quantile): If the variables are correlated,
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the covariance between variable pairs, Ci,k := cov(xi, xk), enters eqn. (1) with a
double sum over all pairs (i, k):
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is:
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The estimation of the correlation matrix is discussed in section 5. Within
numerical integration schemes error propagation does not follow this law.

4.1 Error propagation in Euler schemes

In Euler schemes every discretized equation can be written as:

xi = xi−1 + gi ∆ti, (4)

with ∆ti as the not error afflicted, but varying integration increment, gi as a
function, varying and error afflicted, that incorporates the discretized DEQ within
increment i.

Analysis following the method described in section 5 shows that the correlation
between xi−1 and gi is negligible. This would enforce a Gaussian error
propagation approach. Trying this one will end up with wrong results, because
this approach considers only the increment ∆ti ∈ [0, ∆ti], but neglects the actual
position within the integration process, which would be t ∈ [0, t]. Instead an error
propagation similar to the integration scheme used is postulated:
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In fact, the equation shown is a steady continuation of the existing error with a
gradient with respect to the actual integration increment.

The main advantage is to consider the whole integration time t and the initial
error. The following figures show the differences of a Gaussian and this approach
for the error in velocity and range of a constantly slowed down vehicle from
30 m/s with an error in v0 and in the friction co-efficient:
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Figure 3: Resulting standard deviation of v of analytical solution (grey) and of
Euler scheme (black); Left: Gaussian law Right: New approach.
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Figure 4: Resulting standard deviation of x of analytical solution (grey) and of
Euler scheme (black); Left: Gaussian law Right: New approach.

5 Estimation of correlation coefficients

For the calculation of the error propagation, the covariances between pairs of
parameters must be known. The general definition of the covariance is:

cov(X1, X2) = E(X1 · X2) − E(X1) · E(X2) (6)

= ρ · σ2
1 · σ2

2 (7)

=
∫ −∞

∞

∫ −∞

∞
x1 · x2f(x1, x2)dx1dx2 − E(X1) · E(X2) (8)

with X1, X2 as variates, E(. . .) as the expectant and ρ as the the Pearson
product-moment correlation coefficient (PMCC). Mind that the probability density
function (PDF) f(x1, x2) is a bivariate Gaussian distribution with the Gaussian
distributions of each error afflicted parameter as marginal distributions. The
difficulty to estimate the covariance of two parameters is, that the transformation
of bi-variate distribution to the marginal distributions is irreversible. The bi-variate
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Gaussian PDF is defined by 5 parameters: µx1 , µx2 , σx1 , σx2 , ρ.
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The extraction of the marginal distributions is easy and like:
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but the reconstruction of the bivariate PDF is impossible without the defining
parameter ρ [6]. The approach is to determine this PMCCs using a pseudo empiric
approach.

5.1 Pseudo-empiric correlation matrix

Although the error afflicted parameters used in fire control software are
populations, the method to estimate the PMCC is derived from a method developed
for samples. The way to determine an empiric correlation matrix, as described in
[7], is:

j variates are determined in i samples. The values of the variates are
standardized by subtracting the arithmetic mean value of the variate and dividing
it by the standard deviation of the variate throughout the samples.

zij =
xij − x̄j

sj
(11)

with
zij : standardized value of the variate j in sample i.
x̄j : arithmetic mean of the variate j: x̄j = 1

n

∑n
i=1 xij .

sj : empiric standard deviation of the variate j:
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This standardization results in a n · m matrix Z:

Z =




z11 z12 · · · z1m

z21 z22 · · · z2m

...

zn1 zn2 · · · znm


 (12)

The empiric correlation matrix R is then:

R =
1

n − 1
ZT Z (13)

The expectation value of the empiric correlation matrix R is the correlation
matrix of the population P = E(R).
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The approach is to generate samples out of the error afflicted equation using the
conditional equations of the error afflicted parameters.

1. Each error afflicted parameter is defined as a variate.
2. Each error afflicted parameter appearing in a conditional equation generates

a sample.
3. A sample is generated by perturbing the parameter defined in 2. within all

conditional equations by its standard deviation σ.
4. The results are standardized using the means and standard deviations of the

variate populations.
The resulting matrix consists of n · m samples z, n variates fxn , depending on

m parameters a:

Z =




z11 = fx1(a1 + σa1 , · · · , am) . . . z1m = fx1(a1, · · · , am + σam)
...

...

zn1 = fxn(a1 + σa1 , · · · , am) . . . znm = fxn(a1, · · · , am + σam)




The sum of each column is 1. Each sample adds the part of the PMCC generated
by the perturbed parameter. Perturbed parameters adding parts to more than one
variate cause correlations. Calculating R using eqn. (13) provides an equation
for every PMCC. The division by n − 1 drops out because the use of standard
deviation generates theoretical infinite sized samples and the resulting matrix is
in fact the correlation matrix of the population P . This approach was verified and
successfully tested using Monte-Carlo simulations [8].

6 Example

As an example for safety testing of trajectories an artillery shell was chosen. It is
fired with a quadrant elevation (QE) of 800−. The trajectory was computed using a
predictor-corrector integration scheme for a modified point mass model (MPMM).
Only a few parameters were considered error afflicted, such as the drag coefficient,
projectile mass, QE and muzzle velocity. Using the error propagation technology,
outlined here, a plot can be generated that shows the position of the projectile at
any point of the trajectory on a defined level of confidence. Figure 5 shows areas
of positional probability on a level of confidence of 10 PE which is equivalent to
99.93 %. In the first plot elipsoids for 10 PE for range and height are given. The
second plot shows elipsoids for range and deflection.

For safety tests the most important information is the distance between projectile
and ground measured in times of PE. Figure 6 shows on the left the trajectory and
the corresponding ground profile. On the right the times of PE are plotted together
with the changing safety level regarding the projectile’s traveling over own (20 PE)
or foe (10 PE) ground or while approaching the target (0 PE).
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Figure 5: Probable projectile position on a C.L. of 50 PE.
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Figure 6: Safety in Crest checking in times of PE.

7 Conclusions

The technology of error propagation outlined in this paper is a new approach
in calculating PEs. The current technology of overall numerical derivation with
respect to some parameters is replaced by an analytical derivation with respect to
all parameters and performed within each integration time step. This allows the
change of standard deviation throughout the flightpath of the projectile.
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A new method for the propagation of error afflicted parameters within first and
second order numerical integration schemes has been developed and successfully
tested. The correlation between parameters assumed error afflicted has been
determined using a new quasi empiric approach. The resulting PMCC matrices
vary throughout the flightpath and can be recalculated every integration time step.

In result, flightpath data with information about error probability for position
and velocity for each integration time step is given. Calculation of the probable
error at the target is done automatically and with good accuracy even for deflection,
that was determined empirical before. Safety testing against trajectory - ground
interaction can be performed on a high level of flexibility by changing safety
quantiles during the flight. Checks against no-fly zones now can be performed
by a fraction of the effort formerly necessary.

The usage of the technology outlined is not restricted to trajectory calculation,
but offers the opportunities for many other branches using time critical numerical
initial value solvers.
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