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Abstract 

An analytical approach is developed for the subsequent consideration of the 
Coriolis effect. The target is regarded as a moving target in the star-fixed 
coordinate system. The stationary atmosphere creates a nonuniform cross-wind 
which reduces the normal moving target deflection of the projectile. The 
approach is implemented in a previously developed analytical fast calculation 
method and tested against numerical calculations with good results. 
Keyword:  Coriolis effect, analytical solution, power law, drag coefficient, Mach 
number. 

1 Introduction 

Several analytical solutions of the point mass equation of motion have been 
developed for the fast calculation of direct fire trajectories [1–4], which are 
based on the power law 
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for the drag coefficient variation with Mach number. McCoy [1] published flat 
fire solutions for m= 0, ½, 1. The later solutions [2–4] allow for arbitrary values 
of m and any angle of sight β [3, 4]. Wind can be considered using a coordinate 
transformation [2, 4]. For uphill and downhill firing the change of pressure and 
temperature along the trajectory should be considered. Usually mean values of 
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pressure and temperature are applied [3]. A more sophisticated way [4] is the 
correction of the Mach number exponent, which takes not only the changing 
pressure and temperature but also the curvature of the trajectory approximately 
into consideration.  
     The above mentioned fast calculation methods do not allow for the earth’s 
rotation. In the present paper a simple analytical method is described [5] with 
which the Coriolis effect can subsequently be considered. The same coordinate 
system and nomenclature is used as in the foregoing paper [4]. 

2 Numerical method 

For the precise calculation of the trajectory the complete equation of motion has 
to be integrated numerically. With the previously [2,4] defined ballistic 
coefficient 
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the equation of motion with wind velocity w  can be written as [1] 
 

( ) ( ) bwvwvDg m −−⋅−⋅−= −1v                                       (3) 
 
with the Coriolis acceleration 
 

v×−= ω2b                                                       (4) 
 
containing the earth’s vector ω  of rotation 
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In eqn (5) the angle ψ  is the latitude and the angle γ  the azimuth of fire (x-axis), 
measured clockwise from north. Assuming the standard temperature drop with 
altitude ∆T/∆y = -0.0065 k/m [6] and regarding the atmosphere as perfect dry air 
yields the ballistic coefficient D as function of height y 
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where index “0” indicates the firing site and origin of the earth-fixes coordinate 
system. 
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     Starting at the origin with 0=τ  and { } 0,, == zyxL , the local projectile 
velocity v  can stepwise be calculated as function of time. Integrating 
simultaneously over the time yields L  as function of time. This numerical 
calculation is later carried out in order to test the new approach which is derived 
and described in the following. 

3 Analytical approach 

The equation of motion without the Coriolis acceleration is valid in a star-fixed 
not rotating system which moves with uniform velocity. Therefore the coordinate 
system in which the Coriolis-free solutions [1–4] are valid is considered to move 
on uniformly with the fixed circumferential (not rotating) velocity 0u  of the 
firing site (origin of coordinate system) at the instant of firing 0=τ .  For 0=τ  
this star-fixed coordinate system coincides with the earth-fixed system, for 0>τ  
they separate from each other. 

3.1 The moving centre of gravity 

In this star-fixed system a flying projectile experiences an additional 
gravitational acceleration g∆  in the horizontal direction, as the centre of gravity 
does not remain exactly perpendicular below the projectile. With the simplifying 
assumption of constant mean velocity components vx and vz and the radius R = 
6.37·106m of the globe, the additional time dependent acceleration can be 
expressed as 
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Substituting ωx and ωz according to eqn (5) and integrating twice over the time of 
flight yields the displacement of the projectile 
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The vertical components ∆gy = 0 and ∆L1gy = 0 since 1cos 1 ≈ωτ . The derivation 
of eqn (8) is correct under vacuum conditions. The effect of eqn (8) is very week 
in normal cases and a sufficiently accurate approach.  

3.2 The moving target 

The main effect of the earth’s rotation is the fact that in the uniformly moving 
star-fixed system the earth-fixed target appears as a moving target. We look first 
at the poles of the globe. There the circumferential velocity is zero, but the earth-
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fixed coordinate system rotates relatively to the considered star-fixed system. At 
the north pole any target will travel from west to east, i.e. from right to left.        
A negative angle of lead 0<α  would be required to hit the moving target. The 
shift ω1L∆  of the target during the time of flight 1τ  can be expressed as 
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which leads with eqn (5) to 
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At other latitudes °±≠ 90ψ  an additional target movement takes place in the 
star-fixed system which is caused by the growing distance between the origins of 
both coordinate systems. However, a detailed analysis shows that this additional 
shift can be omitted. Its effect is compensated by the fact that in the usual 
standard free-fall acceleration g = 9.80665 m/s2 (at sea level) the centrifugal 
acceleration due to the earth’s rotation is included (subtracted from the mass 
attraction force). Thus, eqn (10) is valid for all values °+<<°− 9090 ψ .  
     The same shift (10) with negative sign is found by the twofold integration of 
the Coriolis acceleration eqns (4,5) using a constant mean projectile velocity 

11 /τLv = . The negative sign shows that in the earth-fixed system the projectile is 
apparently accelerated and displaced in the opposite direction as the target is in 
the star-fixed system. One could suppose that the final Coriolis deflection of the 
projectile in the earth-fixed system could be expressed as 
 

ω111 LLL g ∆−∆=∆ .                                               (11) 
 
However, this is only a rough approximation under normal shooting conditions 
which will be discussed later in this paper. Eq (11) holds true in a vacuum. The 
contribution 

gL1∆  is normally relatively small. In the special case of the 

downward free-fall in a vacuum at the equator { }( )0,,0,0 11 LL −==ψ  
gL1∆  is 

decisive. For 0=γ  and with the time of flight ( ) 2/1
11 /2 gL=τ  eqn (11) yields the 

correct [7, p.214] east drift 
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The term –1/3 is due to 

gL1∆ . Neglecting it would cause an overestimation of 
50%. 
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3.3 The Coriolis wind 

The moving target problem under consideration differs from the usual case in so 
far as the air follows the moving target. If no wind is present, the stationary air in 
the earth-fixed system rotates in the star-fixed system together with the target. 
The moving target gets tailwind of equal velocity. The wind is not uniformly 
distributed but the cross-wind velocity cw  is zero at the firing site and grows 
linearly with the distance to its maximum value 1w  at the target 
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This Coriolis wind pushes the projectile towards the moving target and reduces 
the deflection according to eqn (11). Since the consideration of uniform wind is 
no problem, a suitable mean uniform Coriolis wind velocity cmw  is defined and 
derived which produces the same effect as the actual linearly growing Coriolis 
wind does: 
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A horizontal flat shot in the x-direction (vx = v) towards a target at distance x1 
with cross-wind of velocity wz = wc is considered. Gravity is neglected. For 
wZ << v 
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From eqns (1–3) one can derive [2] 
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Substituting eqns (16) and (17) into eqn (15) yields a first order linear 
inhomogeneous differential equation for )(τzv . Solving first the homogeneous 
differential equation and applying the variation of the constant yields with the 
boundary condition 0=τ  : vz = 0 the projectile velocity component vz as 
function of time. Integrating vZ from 0=τ  to 1τ  gives the deflection z1 of the 
projectile at the distance x1. The same deflection z1 has to be produced by the 
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uniform wind of velocity wcm, defined with eqn (14). This deflection can be 
found by replacing in eqn (15) the variable velocity w1 ·x/x1 by the constant 
velocity f·w1. The solution leads to the known formula of Didion [1] 
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Equating both deflections z1 and solving for f yields finally the implicit formulas 
for the determination of the correction factor f: 
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For given values of m and guessed values of η the dimensionless number V and 
the factor f can be calculated. Iteratively one can determine f as function of m and 
V. The number V is defined as  
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It is the ratio of the horizontal components of the muzzle velocity and the mean 
velocity. It can be determined once the trajectory has been calculated 
numerically or analytically (neglecting the Coriolis effect). In a vacuum V → 1. 
The right-hand definition as the ratio of the times of flight under normal and 
vacuum conditions is more appropriate when both vx0 and x1 turn to zero. (e.g. 
free-fall in a vacuum). 
     In the special case m = ½ the variable η in eqns (19, 20) can be eliminated 
yielding the explicit formula 
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In the special cases m = 0 and m = 1 the eqns (19, 20) cannot be applied directly 
and the following implicit equations have to be used 
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For m ≠ ½ the determination of f is inconvenient and time consuming. Therefore 
the following empirical explicit formula has been developed: 
 

EVf
211
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For the limiting value V → 1 the exponent E = (l +m)/2 is more precise. Equation 
(25) is sufficiently accurate for all direct fire applications. 
     Once the correction factor f is found, the Coriolis deflection of a projectile 
can subsequently be calculated as follows: First 1L∆  is calculated from eqs (8, 
10, 11). This vector represents the deflection of the projectile from the target 1L  
neglecting the Coriolis wind. The mean Coriolis wind velocity cmw  is calculated 
using eqn (14) with f from eqn (25). If a real uniform wind is present, the 
Coriolis wind velocity has simply to be added to the real wind velocity. The sum 
of both winds can be taken into account by a coordinate transformation [2, 4] or 
other known methods. 
     If no real wind is present the application of Didion´s formula is 
recommended. Combining the shift 1L∆  and the Coriolis wind effect according 
to Didion leads to the following formula for the Coriolis drift of the projectile 
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A horizontal flat shot has been assumed in the above derivations. For uphill and 
downhill fire the exponent m in eqs. (19–26) has to be corrected for changing air 
pressure and temperature along the trajectory [4]. The exponent m has to be 
replaced by m* = m – n with n according to [4, eq. (26)]: 
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4 Test of the analytical approach against numerical 
calculations 

The analytical Coriolis approach has been implemented into a fast calculation 
programme, based on the previously developed explicit Coriolis-free analytical 
solution [4, chapter 3.2 and 4]. The programme is constructed in such a way that 
for a given target (x1, y1) or (L1, β) and wind velocity (wx, wy, wz) the angle of 
lead and the gun elevation angle above line of sight is calculated iteratively. The 
extended programme has been tested against numerical calculations described in 
chapter 2 of this paper. Four typical examples are presented in the following. 
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4.1 Example 1 

The 185 Grain match projectile Lapua Scenar .30 GB 423, d = 7.8232 mm, M = 
11.988 g is considered with m = 0.4855 and C = 0.4286 (eq. (1)). The projectile 
is fired with v0 = 930 m/s at sea level, p0 = 1013.25 mbar and t0 = 15° C. The 
angular velocity of the earth is taken as ω = 7.292 . 10-5 rad/s [1]. The muzzle 
Mach number Ma0 = 2.73. It reduces to Ma1 = 1.25 (in all examples) after the 
fixed time of flight  τ1 = 1.6 s. Table 1 shows calculated Coriolis deflections for 
flat fire from the north pole and the equator. The same results are obtained (with 
millimeter accuracy) from the analytical and the numerical method. The 
analytical deflections are calculated using eq. (26) yielding the same values as 
the fast calculation programme.  

4.2 Example 2 

The same projectile and data are used as in example 1 with the exception of the 
gun elevation angle φ0 = 46° and the latitude ψ = 45°. Table 2 shows the results. 
The values in brackets are analytically calculated deflections which deviate from 
the corresponding numerical values. The largest deviation is 1 mm in height at 
the distance (bee-line) of about 1 km. 

4.3 Example 3 

A projectile of identical shape (equal values of m and C) and mass density is 
considered, which has the threefold diameter d = 23.47 mm. The mass is 
enlarged by the factor 27, yielding M = 323.68 g. From the analytical solution [4] 
one can see that with the same muzzle velocity and threefold time of flight τ 1 = 
4,8 s the end velocity will remain the same at the threefold distance. So Ma = 
2.73 to 1.25. One can also predict that for flat fire the elevation angle above line 
of sight will increase by the factor 3. Table 3 shows the flat fire results for φ0  = 
2°, τ 1  = 4.8 s and L1 = 3019.26 m. The largest deviations are 3 mm. 
Concerning the superelevation angles: For example 1 the Coriolis-free 
superelevation angle ε1 = 9.7866 mils and for example 3  ε3 = 29.3598 mils  =  
3 . ε1. 

Table 1:  Flat fire vertical (∆ y) and horizontal (∆ z) Coriolis deflections, 
calculated numerically and analytically. Projectile Lapua Scenar  
.30 GB 432, 185 Grain. Gun elevation angle φ0 = 1°. Coriolis-free 
range x1 = 1006.2 m, hitpoint height y1 = 7.71 m, distance L1 = 
1006.2 m. Muzzle velocity v0 = 930 m/s, time of flight τ 1 = 1.6 s. 

ψ(°) 90 0 0 0 0 
γ (°) 0÷360 0 90 180 270 

∆y (mm) 0 0 +102 0 -102 
∆z (mm) +102 -1 0 +1 0 
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Table 2:  Uphill fire Coriolis deflections, calculated numerically and 
analytically (deviating analytical results in brackets). Projectile 
Lapua of Table 1, φ0 = 46°, x1 = 705.45 m, y1 = 720.58 m, L1 = 
1008,41 m, v0 = 930 m/s,  τ 1 = 1.6 s. 

ψ(°) 90 45 45 45 45 
γ (°) 0÷360 0 90 180 270 

∆y (mm) 0 0 +51 0 -52 (-51) 
∆z (mm) +72 -1 +51 +103 +51 

Table 3:  Flat fire Coriolis deflections, calculated numerically and 
analytically (deviating analytical results in brackets). Projectile of 
Lapua geometry and mass density but threefold diameter (d = 23.47 
mm, M = 323.68 g), φ0 = 2°, x1 = 3019.22 m, y1 = 16.75 m, L1 = 
3019.26 m, v0 = 930 m/s, τ 1 = 4.8 s. 

ψ(°) 90 0 0 0 0 
γ (°) 0÷360 0 90 180 270 

∆y (mm) 0 0 +920 0 -920 
∆z (mm) +920 -14(-17) 0 +14(+17) 0 

Table 4:  Uphill fire Coriolis deflections, calculated numerically and 
analytically (deviating analytical results in brackets). Projectile of 
Table 3, φ0 = 47°, x1 = 2116.19 m, y1 = 2178.37 m, L1 = 3037.03 m, 
v0 = 930 m/s, τ 1 = 4.8 s. 

ψ(°) 90 45 45 45 45 
γ (°) 0÷360 0 90 180 270 

∆y (mm) 0 0 +469(+463) 0 -469(-463) 
∆z (mm) +655 -20(-22) +463 +947(+948) +463 

4.4 Example 4 

The same data are used as in example 3, however the elevation angle changes to 
φ0 = 47° and the latitude to ψ = 45°. The Coriolis-free distance is now L1 = 
3037.03 m, which is slightly longer than in example 3, although gravity pulls the 
projectile back. The reason is the decreasing air pressure along the trajectory. 
Table 4 again shows very good agreement. The largest error occurs in height 
with 6 mm at a distance of about 3 km. As mentioned with eq. (26), in the 
analytical approach the corrected exponent m has to be used. In this particular 
case m = 0.4855, n = 0.3574 (eq. (27)) and the corrected exponent m* = 0.1281. 

5 Conclusions 

The developed analytical approach yields sufficiently accurate vertical and 
horizontal Coriolis deflections and represents a simple and useful extension of 
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the previously developed [4] analytical fast calculation method for direct fire 
applications. 
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