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Abstract

Cardiovascular disease is one of the major problems in today’s medicine and the
number of patients increase worldwide. To treat these types of diseases, prior
knowledge about function and dysfunction of the cardiovascular system is essential
for identifying the disease in an early stage.

Mathematical modeling is a powerful tool for prediction and investigation of
the cardiovascular system. It has been shown, that the Windkessel model, drawing
an analogy between electrical circuits and fluid flow, is an effective method to
model the human cardiovascular system. The aims of this work are the derivation
of a computational cardiovascular model for the arm arteries, and to analyze the
behavior of the vascular network structure by parameter sensitivity analysis.

Sensitivity analysis is essential for parameter estimation and simplification of
cardiovascular models. In optimal experiment design (OED) sensitivity analysis
is used to construct experiments and corresponding models that allow the
interpretation of cardiovascular measurements in an effective manner. In this
paper we have applied sensitivity analysis to a linear elastic model of the arm
arteries to find sensitive parameters and their confidence intervals that guide
us to the estimation of cardiovascular network parameters. To calculate the
percentage effect on the measurable state variables pressure and flow, with respect
to percentage change in cardiovascular input parameters, we use norms. This
method allows us to quantify and verify results obtained by sensitivity analysis.

The sensitivities with respect to flow resistance, arterial compliance and flow
inertia, reveal that the flow resistance and diameter of the vessels are the most
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sensitive parameters. Those parameters play a key role in diagnoses of severe
stenosis and aneurysms. In contrast, wall thickness and elastic modulus are found
to be less sensitive.
Keywords: computational cardiovascular model, cardiovascular parameters,
sensitivity analysis, Windkessel model.

1 Introduction

With growing interest in the prediction and diagnosis of cardiovascular diseases,
different mathematical models have been developed and applied. Windkessel
models (electrical analogy to fluid flow) have shown to be an effective approach
in modeling the human cardiovascular system [1–4]. Westerhof et al. [3] studied
the design, construction and evaluation of an electrical model. Quarteroni et al. [1]
introduced a multiscale approach, where local and systemic models are coupled
at a mathematical and numerical level. He also introduced the Windkessel models
for different inlet and outlet conditions.

Within the Windkessel model the hemodynamic state variables (pressure (p)
and flow (q)), are interrelated to the model parameters like elastic modulus (E),
vessel length (l) and diameter (d), wall thickness (h), the density of blood (ρ) and
the network structure. Provided that the model parameters estimated correspond
to the cardiovascular measurements, the Windkessel model is a good way to study
vascular parameters, which are difficult to measure directly.

The basis for robust parameter estimation is on the one hand an optimal
experimental measurement setup and on the other hand the development of models
that describe the hemodynamic state variables in a set of relevant parameters that
can be estimated with high accuracy. The design consists of several logical steps,
dealing with questions like:
• How does the optimal measurement setup to identify structural vascular

parameters look like?
• What are the parameters, variables and experimental measurement locations

within a clinical setting?
• Which vascular system parameters are most influential on the hemodynamic

state variables pressure and flow?
• Which vascular system parameters are insignificant and may be fixed or

eliminated?
Sensitivity analysis is a powerful approach to find sensitive and therefore important
cardiovascular system parameters. The important parameters are further used
to design the measurement setup and to modify the computational model for
further analysis. Sato et al. [5] studied the effects of compliance, volume and
resistance on cardiac output using sensitivity analysis. Yu et al. [6] used parameter
sensitivity to construct a simple cardiovascular model. Leguy et al. [7] applied
global sensitivity analysis on the arm arteries and showed that the elastic modulus
is most sensitive parameter, while arterial length is a less sensitive parameter.
In optimal experimental design the information matrix (like, fisher information
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matrix (FIM)) is used for the set of parameters. This information matrix depends
on parameter sensitivity analysis.

The methods developed in this paper, are seen as the first step towards
cardiovascular system identification from cardiovascular measurements. Within
this work we derive a computational cardiovascular model for the arm arteries
by using the Windkessel approach. In a first instance we apply local sensitivity
analysis to study the effects of cardiovascular parameters on the hemodynamic
state variables. Finally we will apply the concept of norms to quantify and compare
our results.

2 Derivation of the model equations

Under the assumption that the arterial tree is decomposed into short arterial
segments of length l with a constant circular cross-section and linear elastic wall
behaviour, the following one dimensional flow equations can be derived from
the linearized Navier–Stokes equation, the equation of continuity and the shell-
equation for thin walled, linear elastic tubes [1, 8]

−∂p
∂x
= Rq+L∂q

∂t
, (1)

−∂q
∂x
=

p
Z +C

∂p
∂t
. (2)

Within these equations the state variables are the inflow q and the relative pressure
p. The viscosity and inertial forces of the blood flow are described by the viscous
flow resistance R and blood inertia L per unit length respectively. The elastic
properties of the wall are modeled by a compliance C per unit length, while
the outflow is modeled by a leakage 1

Z per unit length [8]. Integration of the
two partial differential eqns. (1) and (2) along flow axis leads to a system of
equations (3) commonly used to describe electrical circuits (see Figure 1). In this
type of model each segment of the arterial system is described by a set of two
equations that are known as three element Windkessel equations. Here (pin,qout)
are the boundary conditions for non-terminal nodes. To model a mean venous
pressure with a value of 15mmHg for terminal nodes the equation system is setup
by including an additional terminal resistance Z and using boundary conditions
(pin, pout). The matrix form of the Windkessel eqns. with boundary conditions is

dX
dt
= AX+B (3)

For non-terminal segments (Figure 1:left) X = (qin, pout)T

A =

⎛
⎜⎜⎜⎜⎜⎝

−R
L

−1
L

1
C 0

⎞
⎟⎟⎟⎟⎟⎠ , B(pin,qout) =

⎛
⎜⎜⎜⎜⎜⎝

pin
L

− qout
C

⎞
⎟⎟⎟⎟⎟⎠
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For terminal segments (Figure 1:right) X = (qin,qout)T

A =

⎛
⎜⎜⎜⎜⎜⎝

−R
L

−1
L

1
C − 1

ZC

⎞
⎟⎟⎟⎟⎟⎠ , B(pin, pout) =

⎛
⎜⎜⎜⎜⎜⎝

pin
L

− pout
ZC

⎞
⎟⎟⎟⎟⎟⎠

The electrical parameters for i-th segment in the arterial tree are related to the
physiological parameters of the fluid and vessel wall by:

Ri =
8νl
πr4 , Li =

ρl
πr2 , Ci =

2πr2l
Eh
. (4)

Figure 1: Linear elastic model for fluid flow in nonterminal vessel segments (left)
and for terminal vessel segments (right).

2.1 Vascular model of the arm arteries

2.1.1 Network structure and model equations
Each segment of arm arteries in a network structure as given in Figure 2 is
represented by an electrical circuit as shown in Figure 1.

Applying Kirchhoff’s current and voltage laws to the arterial structure given in
Figure 2, with number of terminals Nt = 3 and number of segments Ns = 15, we
obtain a system of coupled ordinary differential equations for pressure and flow.
Flow equations:

q̇1 =
pin− p1−R1q1

L1
, q̇2 =

p1− p2−R2q2

L2
, q̇3 =

p2− p3−R3q3

L3

q̇4 =
p3− p4−R4q4

L4
, q̇5 =

p4 − p5−R5q5

L5
, q̇6 =

p5− p6−R6q6

L6

q̇7 =
p6− p7−R7q7

L7
, q̇8 =

p7 − p8−R8q8

L8
, q̇9 =

p8− p9−R9q9

L9
˙

q̇10 =
p9− p10−R10q10

L10
, q̇11 =

p6− p11−R11q11

L11
, q̇12 =

p11− p12−R12q12

L12

q̇13 =
p11− p13−R13q13

L13
, q̇14 =

p13− p14−R14q14

L14
, q̇15 =

p14− p15−R15q15

L15
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Pressure equations:

ṗ1 =
q1−q2

C1
, ṗ2 =

q2−q3

C2
, ṗ3 =

q3−q4

C3
, ṗ4 =

q4−q5

C4

ṗ5 =
q5−q6

C5
, ṗ6 =

q6−q11−q7

C6
, ṗ7 =

q7−q8

C7
, ṗ8 =

q8−q9

C8

ṗ9 =
q9−q10

C9
, ṗ10 =

q10− (p10− pout)/Z1

C10
, ṗ11 =

q11−q12−q13

C11

ṗ12 =
q12− (p12− pout)/Z2

C12
, ṗ13 =

q13−q14

C13
, ṗ14 =

q14−q15

C14
,

ṗ15 =
q15− (p15− pout)/Z3

C15

Figure 2: Simplified anatomy of the arm arteries (left) and model geometry with
Ns = 15 and Nt = 3 (right).

2.2 State-space representation

The state-space representation is a useful approach to describe the dynamics in
arterial networks efficiently [9]. In state-space form, we have a system of two
equations: an equation for determining state xt of the system (state equation), and
another equation to describe the output yt of the system (observation equation).
The matrix form can be written as

ẋt = Axt−1+But, (5)

yt = Cxt +Dut. (6)

Here xt is the state vector of the system, ut the input vector and yt the observation
vector. The dynamics of the system is described by the state dynamics matrix
A ∈ M(n× n). The input matrix B ∈ M(n× i) specifies the time dependency of the
in- and outflow boundary values and the observation matrix C ∈ M(m×n) defines
the observation locations within the state-space system, i.e. the nodal location in
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the network. Here m denotes the number of observations. Finally the input to
observation matrix D ∈ M(m × i) adds the influence of the input vectors to the
observation vectors. Besides the computational advantage the state-space form
allows the integration of experimental measurements (observations) into the model
building process. This step is essential for the adjacent model parameter estimation
from experimental measurements, that we have planned in a future study.

In the current study parameter values were taken from the literature [4]. The
state vector xt contains the flow and pressure functions at all network locations,
whereas the output vector yt contains the flow and pressure at selected nodes
i. For a m = 4 dimensional observation vector, the output vector is e.g. y(t) =
(q5(t), p5(t),q6(t), p6(t))T where y ∈ Rm at nodes 5 and 6. The state-space system
for the arm artery given in Figure 2 is then defined by

Ai j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−R i+1
2

L i+1
2

i = 1,3,5, . . . ,29, j = i

1
C i

2

i = 2,4,6, . . . ,30, j = i−1

−1
L i+1

2

i = 1,3,5, . . . ,29, j = i+1

1
L i+1

2

i = 3,5,7, . . . ,29, j = i−1 and i � 21,25

also for i = 21, j = 12 and i = 25, j = 22
−1
C i

2

i = 2,4,6, . . . ,30, j = i+1 and i � 20,24

also for i = 12, j = 21 and i = 22, j = 25
−1

ZkC i
2

k = 1,2,3, i = 20,24,30, j = i

0 otherwise

Bi j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Li

i = j = 1
1

Zj−1C i
2

i = 20, j = 2

1
Zj−1C i

2

i = 24, j = 3

1
Zj−1C i

2

i = 30, j = 4

0 otherwise

Ci j =

⎧
⎪⎪⎨
⎪⎪⎩

1 i = 1,2,3,4, j = i+8
0 otherwise

and Di j = 0.

3 Methods of local sensitivity analysis

To understand the interdependence of the state variables and the parameters of
the cardiovascular model, it is not enough to compute a solution, but also to
quantify the sensitivity of the model parameters. Sensitivity analysis is a useful
tool to quantify the variation in state variables at different nodes in the vascular
network caused by a change in model parameters. Due to the interdependence of
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the electrical analog parameters RCL, we also discuss the linear independent basis
parameters ELdh. Further, we are interested in how the node location within the
network influences the results. Therefore we discuss three different scenarios. The
sensitivity results obtained are compared to the 2-norm of the distance vector of
the state variables of two time series.

3.1 Sensitivity with respect to E, l, d and h

The cardiovascular model consists of a system of ODEs with a parameter set θ and
an initial condition yi(0), given by

dy
dt
= fi(yi, θ, t) i = 1,2, . . . ,n. (7)

In local sensitivity analysis, parameters are varied segmentwise by some portion
around a fixed value and the effects of individual perturbations on the observations
are studied [10]. Using differential calculus the sensitivity coefficients are

S i =
∂yi

∂θ
= lim
Δθ→0

yi(θ+Δθ)− yi(θ)
Δθ

, (8)

where yi is the ith model output and θ is the model input parameter. There exists
a variety of methods to compute the sensitivity coefficients in eqn. (8), within this
work we use the method of external differentiation:

S i =
∂yi

∂θ
� yi(θ+Δθ)− yi(θ)

Δθ
(9)

Applied to our network structure, this equation produces a set of two sensitivity
time series S i(t) (one for pressure and one for flow) per parameter and per network
node (see Figure 3).

3.2 Sensitivity with respect to R, C and L

To find the sensitivity of the electrical analog parameters R, C and L on
cardiovascular pressure and flow, we solve eqn. (7) numerically using the
CVODES solver, which is a part of SUNDIALS software suit [11, 12]. The
computational method is also based on external differentiation.

3.3 Network structure and sensitivity

To study the influence of the vascular network structure, we use a physiological
network structure with identical (non-physiological) Windkessel elements, i.e. the
parameters Ri,Ci and Li are identical for each node. This allows us to analyze
the influence of the network structure onto sensitivity values at different node
locations. Therefore we compute the nodal sensitivity time series S i for all nodal
parameters as described in previous section. For each node, n, we obtain two
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sensitivity time series (one for the pressure and one for the flow) per parameter
variation. The total number of possible parameter variations is 3n2, so we end
up with a set of 6n2 time series. To reduce the complexity, we average the time
dependency by computing the mean of the absolute value of every time series.
The 6n2 real values are used for further analysis in section 4. They are displayed
into 6 matrices that characterize the sensitivity of pressure and flow in the network
structure based on changes in the electrical parameters RCL. Each cell in Figure 5
represents the mean absolute value of time series (S i). Due to the fact that we use
the pressure as an input and output boundary condition, the change in pressure
with any parameter at all inlet and terminal nodes will be zero.

Figure 3: Time series of flow resistance R sensitivity coefficient S i for pressure and
flow at node 7.

3.4 Sensitivity analysis by using norms

To obtain a suitable measure for sensitivity we calculated the mean Euclidean
distances of observations made in a model with different parameter sets θ1, θ2.

‖θ1, θ2‖:= mean
t∈T
‖ yi(θ2, t)− yi(θ1, t) ‖2

‖yi(θ1, t)‖2 i = 1,2,3, . . . ,2×Ns,

4 Results and discussion

Our local sensitivity analysis was carried out as described in section 3. The results
are structured into the following sections:

4.1 Sensitivities with respect to physiological parameters

The sensitivity for pressure and flow are obtained by a variation of the
cardiovascular parameters E, l,d and h of arm arteries by ±10%. From Figure 4
it is directly evident, that diameter and length are most sensitive parameters, while
the elastic modulus and wall thickness are comparatively less sensitive parameters.
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Figure 4: ±10% change in E, l, d and h in arm artery at node 7.

4.2 Sensitivities with respect to fluid dynamical parameters

The sensitivities w.r.t. R,C and L were calculated by forward sensitivity analysis
(FSA) using the SUNDIALS software. The sensitivity pattern obtained by
variation of the viscous flow resistance R in any segment of brachial artery (see
Figure 5 (top)) indicates a strong local (within brachial artery) influence on flow
and has significant global influence on all following nodes of the brachial, ulnar
and radial arteries. In contrast, changing R in the parallel association of the ulnar
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and radial arteries have negligible local and global effects, because in parallel
arteries the total flow resistance is given by the fraction 1

Rtotal
= 1

Rulnar
+ 1

Rradial
, i.e.

due to the increment in total diameter the flow resistance reduces. Physically a
change of R in one branch redirects the flow into the other branch while the overall
flow is maintained. The sensitivity of flow resistance in parallel branches is thus
smaller than in series connections.

In contrast to the flow resistance, the sensitivity of arterial compliance C in
brachial part has small influence (locally and globally) on pressure and flow (see
Figure 5 (middle)). This can be explained by the fact, that in series segments
the total compliance is given by the sum of all segmental compliances in series
Ctotal =

∑6
i=1 Ci. The total compliance is larger than the individual compliances,

thus a change of C in any node has a small effect on pressure and flow in the whole
arm artery. In contrast a variation of the arterial compliance C in the ulnar and
radial arteries have a large (local) effect on pressure and large (global) effect on
flow especially in the brachial artery.

Figure 5: Effects of viscous flow resistance R (top), vessel compliance C (middle)
and blood inertia L (bottom) on pressure and flow in the arm arteries.
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From eqn. (4) it is obvious that viscous resistance and blood inertia are inversely
related to r4 and r2 respectively. Which means in large arteries blood inertia plays
an important role, while in small arteries viscous resistance is more important. A
variation of blood inertia in the first node of the brachial artery has large influence
on pressure and flow of all following nodes of the arm arteries (see Figure 5
(bottom)). However, we observe only minor local (within brachial artery) effects
on flow when we change L in each segment of the brachial artery. Further, due
to the fact that the total inductance 1

Ltotal
= 1

Lulnar
+ 1

Lradial
reduces at the furcation,

the flow and pressure in the ulnar and radial arteries are less sensitive with respect
to L.

4.3 Sensitivities with respect to norms

Finally we compare the results obtained by sensitivity analysis with those obtained
by using norms (see Table 1 and 2). We found that the diameter and length of vessel
are most influential parameters and that the norm computed for the wall thickness
and elastic modulus has identical values.

5 Conclusion

The sensitivity analysis is the first step towards the estimation of model parameters
from experiments. It identifies the parameters in our model that are important
to describe the dynamic behaviour of the system, i.e. it defined the parameters
that should be estimated correctly and on the other hand those parameters that
are less important. Sensitivity analysis thus allows the design of problem specific
experiments, i.e. just gather the information that is required to generate a predictive
model that describes the actual health status of a patient. It therefore improves the
model quality and thus the ability for diagnosis and prediction in cardiovascular
physiology. This finally benefits the medical doctor in decision making.

In this work we applied different methods of sensitivity analysis to a lumped
parameter Windkessel model of the arm arteries. The results indicate a strong
dependence of the pressure and flow state variables onto a variation in vessel
diameter and length. According to the elastic properties and the thickness of the
arterial wall, a much lower sensitivity was found.

Further, we have used the concept of norms to compare the variation in state
variables according to parameter changes. We found a good agreement to the
results obtained by sensitivity analysis.

The methods applied, give satisfactory results if the cardiovascular parameters
are independent, in the real scenarios however, they are often interdependent like
e.g. the observation of a high correlation between the extension of the elastic walls
and the tangential tension caused by transmural pressure. To study these type of
effects in a more general way, we plan to apply global sensitivity analysis to a
closed loop cardiovascular system model, which deals with variations in many
parameters at a time.
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