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Abstract 

The supply of oxygen and glucose by blood flow is vital to the normal function 
of the brain and the deficit of either of these metabolism elements can cause 
severe degradation of the brain functionality. The transport of materials in the 
complex multi-branching structure of the cerebral vasculature is investigated to 
predict brain oxygenation under normal conditions. 
     A mathematical model of material transport due to pulsatile flow in a 
complex dichotomous branching tree network was developed which incorporated 
material-geometry interaction and diffusion across the blood vessel wall. Unlike 
previous work, this modelling work includes the full network structure and 
incorporates time-dependent flow.   
     The predicted results indicate some effect of the flow transients on the 
propagation of the material introduced at the root segment in the vascular 
network. The effect was more pronounced in the case of constant blood 
viscosity. The transport model addressed the issue of oxygen transport in the 
cerebral vascular branching network with the inclusion of red blood cell (RBC) 
separation at bifurcation points. The predicted results indicate the significance of 
the vascular network geometry and RBC-bifurcation point interaction in defining 
the homogeneity of flow and oxygenation by the fractal vasculature. The 
simulations are found to be able to provide insights into the transport of materials 
by the blood circulation in the cerebral vasculature and the various factors which 
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may affect the process. The separation of RBCs at branching points has a 
profound effect on the haemoglobin transport and, consequently, oxygen 
distribution in the vascular branching network. 
Keywords:  cerebral vasculature, branching tree, pulsatile flow, red blood cells, 
brain oxygenation. 

1 Introduction 

Diffusion and convection of materials in the complex network of blood-
supplying vessels have been important issues in pharmacokinetics, 
toxicokinetics, and medical imaging research. In these studies, heterogeneity of 
the flow and material distributions and the transit time kinetics are the major 
investigative issues [1]. Transport of materials by blood flow also is an important 
subject of physiological and pathological studies, which can elucidate the 
interdependency of the blood flow and the brain oxygenation and hypoxia [2, 3] 
and help to reveal the mechanism of embolic stroke [4, 5]. 
     There are three major aspects of material transport by blood flow, namely 
convection by the flow, diffusion across the vessel walls, and consumption in or 
release from the tissue. The flows in microvasculatures have been numerically 
analysed in the past [6–9]. However, most of these works considered the 
networks of small arteries as binary asymmetric structured trees attached to the 
terminals of large arteries [6, 7]. They did not model the detailed structure of the 
small arterial network and the flow inside it. Mayer [9] and Gabryś et al. [8] 
modelled the flows in different bifurcation levels of more detailed branching 
networks constructed on the basis of the fractal scaling principle, but the 
important effect of the flow pulsation (and the arterial vessel compliance) was 
not considered. 
     Various factors may affect the diffusion of materials across the blood vessel 
walls. For instance, the blood-brain barrier is known for having an important 
restricting effect on the passage of chemical substances and objects from the 
blood to the  brain tissue  [10]. Edvinsson et al
relationship between oxygen consumption (metabolism) and blood flow in the 
brain and how their interdependence has a profound implication both on the 
normal functioning of central nervous system as well as on the possible 
pathological progression of various disorders and diseases. 
     Some numerical studies of material and, in particular, oxygen transports by 
the blood flow in models of blood vessel networks were considered [2–4,  
12–20]. Often, the complex vascular networks were structurally simplified [3, 4, 
12, 13, 16] to reduce the difficulty of numerical procedure and/or to have 
analytical solutions attainable. In most of the above studies, the transient effect 
of the flow on material transport was ignored. 
     In this study, a mathematical model of material transport due to pulsatile flow 
in a complex dichotomous branching tree network was developed which 
incorporated material-geometry interaction and diffusion across the blood vessel 
wall. The aim of this study is to investigate the effect of transient flow, RBC 
separation, oxygen diffusion across wall on the material transport in the Middle 

. [11] described how there is a close 
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Cerebral Artery (MCA) cerebral vasculature. Unlike previous work, this 
modelling work includes the full network structure and incorporates time-
dependent flow.  

2 Methods 

2.1 Pulsatile flow inside a fractal branching-tree model of the cerebral 
vascular system 

In this work, a three-dimensional (3D) branching-tree model of MCA cerebral 
vasculature has been constructed on the basis of fractal scaling principal using 
the Constrained Constructive Optimization method (CCO) [21]. A model of 
pulsatile flow and pressure distribution in a vascular branching network, which 
takes into consideration the effect of variable blood rheology and blood vessel 
compliance, has been developed by Bui et al
and pressure distributions in a complex vascular branching network can be 
described by a system of differential algebraic equations (DAEs) representing the 
mass conservation at the branching points. In this work, the MCA flow rate is 
2.78 mL/s, perfusion volume is 280 cm3 and the total number of segments is 
5559. The flow at the simulate nodes are listed in Table 1. 

Table 1:  Flow at simulation nodes. 

Node Flow ratio Bifurcation level Strahler order* 
N1(root)  1 1 7 
N2 0.38 7 6 
N3  0.077 15 5 
N4  0.024 24 4 
N5  0.01 31 3 

*The Strahler order defines branch size based on smaller branches in the tree. 
The Shrahler number is a numerical measure of branch complexity. 

2.2 Material transport inside a vascular branching networks 

Inside a segment of a vascular branching tree, the mass conservation of the 
material can be written as follows with the diffusion term omitted [5]: 
 

 
     coutinoutin

outin mccQQ
d

ccd
V 2

t  
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
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where ci is concentration, V is segment volume, Q is mass flow rate and cm is 

the generation or loss of material i. Eqn (1) has a form similar to the oxygen 
transport formulation given  by  Boas  et  al
branching points defined as described in section 2.1 [19], the above transport 
equation can be solved for all segments of the network with the concentration at 
the root of the branching tree prescribed as the boundary condition. 

. [19]. They showed that the flow 

.  [3].  With  the  volume  flow  rate  at  all  
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2.3 Oxygen transport inside the vascular network and in the surrounding 
tissues 

An important aspect of the transport in the vascular network is the delivery of 
oxygen by the blood to the tissue. Oxygen is transported in the blood mainly by 
haemoglobin (Hb). To a much lesser degree, oxygen is also dissolved in and 
carried by the blood’s plasma. Both of the above transport mechanisms are 
dependent on the partial pressure of oxygen

2
.Op  The total concentration of 

oxygen in the blood is therefore defined as: 

    
22

4 OsOHb pcpScc  . (2) 

     The first term in eqn. (2) describes the oxygen transport due to haemoglobin 
convection with 4cHb indicating the concentration of oxygen bound in RBC 
haemoglobin molecules at saturated state (i.e. each haemoglobin molecule binds 
with four oxygen molecules) and S being the haemoglobin saturation, which is 
commonly related to the oxygen partial pressure by Hill’s correlation, as follows: 
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where p50 is the oxygen partial pressure at 50% haemoglobin saturation and n is 
the haemoglobin cooperativity. The dependence of oxygen saturation in 
haemoglobin on the partial pressure of oxygen in the blood is called the oxygen-
haemoglobin dissociation curve, which indicates the haemoglobin oxygen 
binding characteristics or the haemoglobin’s affinity for oxygen. This 
dependence may change (or shift) due to different factors, such as age, body 
temperature, or hydrogen ion concentration (pH). An increase of p50 indicates the 
haemoglobin’s increased affinity for oxygen. As oxygen must dissolve into 
plasma before diffusing through the blood vessel wall to the tissue, the oxygen-
haemoglobin dissociation curve is an important factor defining the dynamics of 
oxygen delivery. With the use of Hill’s correlation to correlate haemoglobin 
saturation and oxygen partial pressure, the kinetics of the oxygen-haemoglobin 
dissociation reaction is not considered. 
     The second term in eqn. (2) representing the oxygen concentration in plasma 
is determined by Henry’s Law as: 

  
22 OOs ppc   (4) 

with   being the coefficient of oxygen solubility in plasma. As noted in [15] 
and [17] the dissolved component of blood oxygen is small, unless under 
hyperoxic condition. 

2.4 Equations of oxygen transport by blood 

Instead of an equation for total oxygen concentration transport, two differential 
equations can be written for the oxygen transports by haemoglobin and plasma 
as follows: 
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where  
2 2

4HbO Hb Oc c S p  is the oxygen bound in haemoglobin molecules, dm is 

the oxygen mass flow released to plasma due to the oxygen-haemoglobin 
dissociation reaction, is the average flow velocity, D the diffusion coefficient 
and cm is oxygen flux delivered to the surrounding tissue through the vessel 

wall. Although a unique flow velocity has been assumed for plasma and 
haemoglobin in this work, their velocities may be different. 
     The above approach was employed in the  work  by  Vadapalli  et  al
work by Pozrikidis and Farrow [23] took into consideration the effect of the fluid 
flux through the blood vessel walls, which changes the flow rate and pressure in 
the vasculature. Distribution of oxygen along a straight blood vessel was 
obtained using a boundary integral method. 
     The above-mentioned studies dealt with the complex issue of variations of 
oxygen concentration and partial pressure along each segment length. In this 
work, a more simplified model of oxygen transport was developed based on the 
assumption that dissolved oxygen is low in concentration and does not contribute 
significantly to the oxygen transport by the blood. Ignoring the diffusion of 
oxygen along blood vessels the transport eqn. (5) can be written as: 
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eqn. (7) is seen to comprise of two transport equations, one for haemoglobin and 
the other for S, as follows: 
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     The two transport equations above are solved in sequence as the transport of 
haemoglobin is decoupled from the transport of S. Apart from the transport by 
blood convection, the concentration of haemoglobin may be altered due to 
interaction of RBCs with blood vessel geometry at the branching points as 
described in more details below. With the haemoglobin saturation S correlated 
with the oxygen partial pressure 

2Op  as described by eqn. (3), eqn. (9) for S can 

be converted into an equation for 
2Op  as follows: 
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.  [22].  The  
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2.5 Change of red blood cell concentration at branching points 

At bifurcation points in a microvascular network, separation of the RBCs may 
occur since the RBC are comparable in size with the blood vessels. Therefore, 
their interaction with the bifurcation geometry could lead to behaviour different 
from that of  the bulk flow.  The  experimental  study  by  Pries  et  al
some insight into the RBC separation phenomenon. Most remarkably, the study 
indicated that the interaction at a bifurcation point would lead to more RBCs 
going into smaller daughter branches and the separation effect depends strongly 
on the joining-vessel diameters, but not on bifurcation angle. At a bifurcation 
point shown in Fig. 2(a), the conservations of overall flow and oxygen 
concentration dictate: 

 ininout
o QQQ 21  , (11) 

 ininininout
o
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Using eqn. (11) and eqn. (12), as well as RBC separation at the bifurcation point 
described above, the following relationship can be obtained: 
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2.6 Oxygen transport inside the vascular network and in the surrounding 
tissues 

With only one transport equation for haemoglobin oxygen, the dynamics of oxy-
haemoglobin dissociation reaction can not be taken into account. Therefore, a 
balance of the oxygen dissociated from haemoglobin and that diffused into and 
consumed by the tissue has been assumed. Diffusion of oxygen across the blood 
vessel wall can simply be defined by Fick’s Law: 

   VAppDm w
tis
OOwc /22

 , (14) 

where Dw and Aw are the oxygen diffusivity and area of the wall, and tis
Op

2
 is the 

tissue oxygen partial pressure. The oxygen distribution inside tissue is described 
by a diffusion equation as follows:  
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where Dtis indicates the oxygen diffusivity of tissue and
2MROm denotes the 

metabolic (consumption) rate of oxygen by the tissue. 
     Without the oxygen transport by haemoglobin, transport of oxygen dissolved 
in the tissue is described by an equation similar to eqn. (4) and the equation of 
oxygen diffusion becomes:  
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.  [24]  provides  
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     In a number of modelling investigations [3, 25], a common oxygen partial 
pressure was assumed for all the tissue volume under consideration. As a result, 
the issue of oxygen diffusion in the tissue became irrelevant. In some other 
studies [2, 15, 17, 18], three-dimensional distribution of oxygen was considered 
and the models of oxygen transport in the blood and the tissue were coupled 
using a Green’s function method.   

3 Results and discussion 

3.1 Effect of modelling species transport with pulsatile flow 

Predictions of species transport in the MCA branching model by steady-state and 
pulsatile flows are shown in Fig. 1. In these simulations, the initial and boundary 
conditions: c(t = 0) = 0 and c(root) = 0.1, were applied. Significant difference in 
the transients of the concentration at different branching levels was observed, 
especially when the blood viscosity was assumed to be constant. The smaller 
difference between the transport by steady-state and pulsatile flows, when the 
blood viscosity was dependent on the blood vessel size was probably a result of 
increasing blood flow rate in the whole vascular system (see [19]). 
 

 
            (a)                                                           (b) 

Figure 1: Transport of a species in the MCA branching tree model by steady-
state and pulsatile flows: (a) size dependent vessel compliance, and 
(b) size dependent vessel compliance and blood viscosity. Refer to 
Table 1 for N1, N2, N3, N4 and N5. In the figures the graphs with 
increasing node (N) are left to right. The lines with symbols are for 
pulsatile flow. 

3.2 Effect of modelling RBC separation at bifurcation points 

The effect of RBC separation at bifurcation points was investigated by 
introducing 5% higher RBC concentration of the blood flowing into smaller 
branches (i.e., /branch common

in outc c  = 1.05). The prediction results with RBC separation 
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are displayed by lines with symbols in Fig. 2(b). Significant deviations of RBC 
concentration (up to 15%) from the corresponding case without RBC separation 
(lines without symbols) are observed for nodes at different levels of the MCA 
branching tree model. The deviations are also seen to amplify in the successive 
levels of the branching tree model, and in certain flow paths lead to the increase 
of RBC concentration as seen at point N3. Therefore, the branching tree 
geometry can be an important factor influencing the transport and distribution of 
RBCs (and dispersed species whose sizes are comparable to the blood vessel 
sizes) in the branching network of small blood vessels. Instead of a deterministic 
model of material-bifurcation interaction which can be derived from the work by 
Pries et al y also be used as in the work by 
Chung et al
such a material-bifurcation interaction and more realistic description of the 
material transport in vascular branching networks. 

     
                 (a)                                                                   (b) 

Figure 2:  (a) Flow and oxygen concentration at a bifurcation point. 
(b) Transport of RBCs in the MCA branching tree model by 
pulsatile flow with separation of RBCs at branching points. The 
corresponding simulation results without RBC separation are 
shown by lines without symbols. 

3.3 Effect of oxygen diffusion across the blood vessel wall 

The transport of oxygen in the MCA network was investigated with the oxygen 
partial pressure of the tissue assumed to be constant. As described earlier, a 5% 
increase of the RBC (and haemoglobin) concentration of the blood flowing into 
smaller branches was introduced to imitate the effect of blood cell separation at 
the branching points. With the discharge hematocrit assumed to be 45% the 
initial and inlet haemoglobin concentration was set equal 15.75% by volume. 

. [24], a statistical interaction model ma
. [4]. Such a model can provide an insight into the stochatic nature of 
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     Fig. 3 shows the distribution of 
2Op in a small MCA branching vascular 

model without (left) and with (right) oxygen diffusion across the blood vessel 
wall at time 2s. When oxygen diffusion across the blood vessel wall is modelled 
the oxygen concentration within the arterial tree varies and is more realistic.  
 

  

Figure 3: Distribution of 
2Op in a small MCA branching vascular model 

without (left) and with (right) oxygen diffusion across the blood 
vessel wall at time 2s. 

3.4 Effect of modelling RBC-bifurcation on total oxygen content 

The predictions of total oxygen content for the cases without and with RBC-
bifurcation interaction are presented in Fig. 4. Without the effect of RBC 
separation at branching points, gradual decrease of oxygen concentration in the 
successive branch levels is observed which is induced by the outward oxygen 
diffusion into the tissue. The separation of RBCs at branching points has a 
profound effect on the haemoglobin transport and, consequently, oxygen 
distribution in the vascular branching network as seen in Fig. 4 (right). The 
increase of RBC concentration along certain flow paths (as explained in 
section 3.2) is seen to cause the increase of oxygen concentration at point N3 
above the inlet concentration. At higher branching tree levels (e.g., N5) the 
oxygen concentration is lower when RBC separation is included. 

3.5 Current model and future model improvements 

In this work, a model of dynamic material transport was developed and coupled 
with the model of pulsatile flow in the fractal network of the cerebral 
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Figure 4: Distribution of oxygen in the MCA branching tree model by 
pulsatile flow without (left) and with (right) RBC separation at 
branching points. 

microvasculature. The model included blood descriptions of vessel compliance, 
variable blood rheology, material-geometry interaction, effect of RBC separation 
at bifurcation points and diffusion across the blood vessel wall. The predicted 
results indicate the significance of the vessel geometry and RBC-bifurcation 
point interaction in defining the blood flow and oxygenation by the fractal 
vasculature.  The model can assist in developing a better understanding of into 
oxygenation in the brain. 
     This model of the transport of materials in the complex multi-branching 
structure of the cerebral vasculature could be used to predict the brain 
oxygenation under abnormal conditions, when changes in cerebral flow result 
from aging, diseases, and metabolism. For example, the effect of blood vessel 
wall vasoconstriction (narrowing), wall structural property (elasticity) or inlet 
flow on cerebral blood flow and brain oxygenation. 
     Future extension of this transport model could include coupling with a model 
of the three-dimensional oxygen transport and consumption inside the cerebral 
tissue, so that the effect of local variation of metabolism rate and hypoxia can be 
predicted. The model can also be improved by including a more accurate 
geometry representation of the preferential distribution of large arteries on the 
brain cortex as per Bui et al. [26].  The posterior and anterior cerebral 
vasculature which have certain variations in structure and geometry compared to 
the MCA will be investigated in a future study. 

4 Conclusion 

A mathematical model of material transport in a branching tree network of the 
MCA cerebral vasculature was developed which incorporated transient flow, full 
network structure, material-geometry interaction and diffusion across the blood 
vessel wall. 
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     The model showed that transport of species in the branching tree differs 
between transient flow and steady flow. The branching tree geometry can be an 
important factor in influencing the transport and distribution of RBCs. The RBC 
separation at branching points had a large affect on the oxygen distribution in the 
vascular branching network. It is shown that oxygen diffusion across the wall 
needs to be modelled to better simulate the oxygen distribution. 
     In future, this model can be used to predict the brain oxygenation in the 
complex multi-branching structure of the cerebral vasculature under diseased 
conditions with changed cerebral flow. 
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