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Abstract 

Computational models and simulations can be powerful tools for gaining an 
insight into the extremely complex mechanisms governing tumoral growth. In 
order to be relied upon, however, they must be validated by comparison with 
sufficiently long strings of experimental or observational data. For obvious 
ethical reasons it is virtually impossible to obtain such data “in vivo”. It may be, 
therefore, expedient to study the growth of tumoral lines “in vitro” or “ex vivo”, 
i.e. by transplanting them into lab animals (e.g., mice). In fact, experiments with 
as many as 900 successive transplants into new healthy mice have been 
performed. Using a recently proposed technique for the analysis of experimental 
datasets (the Phenomenological Universalities Approach), we have succeeded to 
reproduce, to an excellent level of reliability, the results of such “multipassage” 
growth and to explain quantitatively why the growth curves become 
progressively steeper at each new transplant. We believe that our method could 
also be applied to study metastatic diffusion and suggest new experiments to 
further validate our approach and results. 
Keywords: tumor models, growth models, data analysis. 

1 Introduction 

Computational models can be very useful in many subfields of biomedicine and, 
in particular, in oncology, due to the extreme complexity of the mechanisms 
governing tumoral growth, such as angiogenesis, invasion of the surrounding 
tissues, metastatic diffusion, etc. In fact, such models allow theoretical 
understanding of the processes involved, by varying the details of the proposed 
model or their parameters, or by adding new ingredients and/or eliminating 
ineffectual ones. If a satisfactory agreement is found with the experimental or 
observed phenomenology, the models may help to reach a good comprehension 
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of the neoplastic development. As a corollary, it becomes possible to perform 
virtual experiments of selected therapies and to predict or optimize the outcome 
of suggested therapeutic protocols. In some cases they can also reduce the need 
of much more expensive and objectionable experiments on lab animals. 
     The current relevance of mathematical and computational modeling is due to 
a combination of related factors [1]. Among them: the advent of systems-
biology-driven concepts in biomedicine that draw from an ever increasing 
volume of molecular data [2–5], the introduction of novel and cancer-focused 
interdisciplinary funding programs at the NIH (such as the Integrative Cancer 
Biology Program [6]) and the decreasing cost of the computational power 
necessary to run large and clinically relevant simulations. 
     Physical models, based on a comparison with well known phenomena, which 
present formal analogies with some aspects of the tumoral development, may 
also be extremely useful, since they may suggest new mechanisms to be tested 
and analysed. This “crossfertilization” can be efficiently achieved by means of 
the Phenomenological Universalities (PUN) approach, recently proposed by 
Delsanto et al. [7–9]. As an example of physical models, we wish to mention 
here the study of tumor invasiveness, based on the analogy with two well known 
physical mechanisms, i.e. the mechanical insertion of a solid inclusion in an 
elastic material specimen or the impinging of a water drop on a solid surface 
[10]. 
     Finally, biological models are essential to validate the results obtained by 
means of the theoretical models, both for what concerns the understanding of the 
phenomenology and the applications for diagnostic and/or therapeutic purposes. 
They include the implementation of selected tumor lines in “in vitro” or “ex-
vivo” experiments on lab animals, such as mice. 
     For a broad list of recent articles and other information on this topic, we refer 
to the repository of mathematical models and corresponding computational codes 
assembled within the framework of the Center for the Development of a Virtual 
Tumor (CViT) Project (http://www.cvit.org), belonging to the US NIH-NCI 
ICBP (integrative Cancer Biology Program) [6]. 
     There exists a large number of computational models and simulation 
techniques, such as cellular automata, finite difference methods, LISA (Local 
Interaction Simulation Approach), etc. [11–16]. They generally consist of 
‘‘mesoscopic’’ formulations that help us to connect the macroscopic and 
microscopic points of view, i.e. what is mainly of clinical interest from what can 
be learned from the bio-chemo-physics of the cells, e.g. by means of “ab initio” 
calculations [17]. Such an understanding is necessary not only to predict the 
emergence of macroscopic phenomena out of microscopic laws, but also to 
correlate microscopic and macroscopic parameters [18,19]. 

2 The PUN approach 

The PUN approach consists of the search of best fitting functions based only on 
the experimental datasets available and without any reference to the field of 
application. The most important PUN classes studied to date are the above-
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mentioned classes UN, which at the first level (N=0) correspond to unrestricted 
exponential growth. At the level N=1, they yield the Gompertz law. Finally, at 
the level N=2 (i.e. U2), they successfully predict the fractal properties of the 
solution of the growth equation at larger times.  
     From a purely applicative point of view, PUNs can be described as a tool for 
solving the following problem: let us assume that we have an experimental 
dataset: ( )i iy y t= , where t can be the time (or any other independent variable) 
and y any observable depending on it. The usual procedure is to perform a fitting 
of the data, but the choice of the fitting function is generally arbitrary. As a 
result, the analysis is, in general, only of qualitative value, and often based on the 
visual inspection of the plots. By contrast, we wish to proceed here in a way that 
is justified in the framework of a “universal” approach, i.e., totally independent 
of the field of application. 
     If the nature of the problem suggests that it can be reduced to a first order 
ODE, we aim to analyse it starting from the nonlinear growth equation: 

( , ) ( )y a y t y t=              (1) 

where 
dyy
dt

= and a    represent the growth rate. 

     Equation (1) is, however, not limited to the modelling of growth problems, 
since there is no restriction on the nature of the variables y and t. Equation (1) in 
its complete generality cannot take us too far. In order to use it for a quantitative 
analysis, it is necessary to restrict its generality by means of some “constraint”, 
which, although arbitrary, at least are independent of the particular field of 
application. Let us then assume that a  is a function solely of ln( )z y= and that 
its derivative with respect to z may be expanded as a set of powers of a, i.e. 

1
( ) n

n
n

da dab a b a z a a
dz dz

α
∞

=

= = = = =∑       (2) 

 
If a satisfactory fit of the experimental data is obtained by truncating the set at 
the N-th term (or power of a), then we state that the underlying phenomenology 
belongs to the Universality Class UN. It can be easily shown that the 
Universality Class U1, i.e. with N=1 and 1b aα= , represents the well-known 
‘Gompertz’ law, which has been used for more than a century to study all kinds 
of growth phenomena. The class U2 includes, besides Gompertz as a special 
case, all the growth models proposed to date in all fields of research, i.e., besides 
the already mentioned model of West et al. [20,7], also the exponential, logistic, 
thetalogistic, potential, von Bertalanffy, etc. (see, for a review, Ref. [21]). 
     By solving the differential equations =z a   and =a b , with b written, for 
brevity, in the case N=2 
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2b a aα β= +            (3) 
 
we find the U2 solution 
 

   ( )
1

1 1 ty e
βαβ

α

−
 = + −  

       (4) 

 
It is interesting to observe that Eq.(4) can be written as  
 

1 2u c c τ= +       (5) 
 
which shows that the scaling invariance, which was lost due to the nonlinearity 
of ( )a z , may be recovered if the fractal-dimensioned variable u y β−= and 

exp( )tτ α=    are considered. In fact is, in general, non-integer. In Eq. (5) 1c  

and 2c  are constants: 2c β
α= − , 1 21= −c c .  

 
     It may also be useful to note that y  is the solution of the ODE: 
 

1 2γ γ= − ,py y y      (6) 
 
where 1p β= + . 1γ  and 2γ  are two constants: 2γ α β= / and 1 21γ γ= − . 

Their sum is equal to 1, due to the chosen normalization (0) 1=y . Equation (6) 
coincides with West's universal growth equation [20], except that here p  may 
be totally general, while West and collaborators adopt Kleiber's prescription 
(p=3/4) [22], which seems to be well supported by animal growth data. For other 
systems different choices of p  may be preferable: in particular C. Guiot et al. 
suggest a dynamical evolution of p  in the transition from an avascular phase to 
an angiogenetic stage in tumors [23]. 
     Equation (6) has a very simple energy balance interpretation, with 1γ

py  

representing the input energy (through a fractal branched network), 2γ y  the 

metabolism and y  the asymptotically vanishing growth. In fact all UN’s (at 
least up to N=3) correspond to energy conservation (or, equivalently, to the first 
Principle of Thermodynamics). However, in U1 there is no fractal 
dimensionality and both the input energy and metabolism are proportional to y. 
In U2, as we have seen, there is fractal dimensionality in the energy input term. 
In U3 there is also a fractal dimensionality term (with the same exponent p ) in 
the growth. 
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     Another very important property of complex systems is cyclicity, which 
seems to be an almost unavoidable consequence of the feedback system from the 
surrounding environment, particularly in biomedical and socio-economical 
sciences. In order to include it in the treatment, we must also consider the case of 
dependence of a on both z and t [24]. We assume that 

( ) ( ) ( ), = +a z t a z a t  
 
in which a  is assumed to be the sum of two contributions to the growth rate, one 
( ( )a z ) which depends only on z  (or y ) and the other ( ( )a t ) solely time-
dependent. Then, by writing, 

( ) ( )= ,y y t y t  (6) 
it follows 

( )= + ,y a a yy  

which shows that Eq.(1) can be split into a system of two uncoupled equations 

( )=y a z y          (7) 
and 

( )=y a t y           (8) 
 
Eq.(7) can be solved as before (for the case ( )a z ), giving rise to the classes UN. 
For the solution of Eq.(8) we can assume  
    

 
1

∞

=

= =∑ n n
n

a z A E          (9) 
 

where exp[ ( )]ω= +Ψn nE i n t . 

     Then, if the sum in Eq.(3) can be truncated to the M-th term, we will state that 
the corresponding phenomenology belongs to the class UN/TM. 

3 PUNs and the multicellular tumor spheroids (MTS) growth 

A convenient experimental tool that captures some of the most relevant features 
of tumor growth kinetics while allowing for a manageable description are the 
multicellular tumor spheroids (MTS) [17,19]. MTS are spherical aggregations of 
tumor cells that may be grown under strictly controlled conditions. Their simple 
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geometries and the ability to produce them in large quantities has led to 
interesting new insights into cancer research. 
     In order to understand the “basics” of tumor evolution, we recall that it is 
generally assumed that tumors originate from a “seed” and grow by cell 
duplication, therefore following in a first phase an exponential growth law. As 
long as no mechanical or nutritional restrictions apply, they go on replicating 
with a constant duplication time. After a while, however, host and other 
constraints force the development of a necrotic core, and growth slows down 
towards some asymptotic level of saturation. This behaviour is well described by 
the well-known Gompertz law, which has been heuristically used for more than a 
century in biology and other disciplines. Most aggressive “in vivo" or "ex-vivo" 
tumors overcome nutrients deprivation by means of angiogenesis, and the neo-
vascular network partly supports growth, as discussed by Delsanto et al. [25], 
following the model of West et al. [20] and West and Brown 22]. This third 
phase is complemented by the processes of tumor invasion and metastasis. 
     In Fig.1 three regions may be well identified. In the first one, corresponding 
to the PUN class U0, there is an almost perfect exponential growth without 
necrotic core formation. In the second one, corresponding to U1, a bending of 
the growth curve towards some asymptotic level of saturation can be clearly 
observed: it is due to the decreasing availability of nutrients for the growing 
MTS. In the third phase (U2), a further decrease in the growth rate occurs, since 
the MTS approaches the borders of the culture medium in a non-uniform fashion, 
giving rise to some fractal structures at its surface and/or core interface. 
 
 

 

Figure 1: The three phases of growth of MTS. Temporal evolution of a MTS 
made of EMT6/Ro mouse mammary carcinoma cells grown in a 
confined culture medium. The experimental data (triangles) are 
taken from [26]. The “squares” and “circles” correspond to the total 
numbers of MTS cells and necrotic cells, respectively. They have 
been obtained from a mesoscopic simulation, based on the model of 
Delsanto et al. [18,19]. 
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4 PUNs and the multipassaged tumors in mice. 

By applying the PUN approach to the data of Steel [27] and McCredie and 
Sunderland [28], we have found that the class U2 describes extremely well both 
their datasets, although with accelerated time scales. If we transplant a tumor 
seed in a mouse flank and, after it has grown for a few days, we collect a small 
fraction m0 of the tumor and reimplanted it to another mouse etc.  each time only 
for a short time  T (e.g. ten days) tumor is allowed to grow;  then we can assume 
at each ‘passage’ n  an experimental growth law with approximately the same 
rate a (since free growth, in a healthy and nutrient-rich tissue is always 
occurring, and can write at time t=nT+∆t . In fact, experiments with as many as 
900 successive transplants into new healthy mice have been performed. It was 
observed that tumors grow rate apparently increases at successive transplant (see 
Fig 2(a)). Actually, Eq.(10) shows that at each transplant the exponential trend is 
corrected by a term which accounts for the real age of the tumor which, by 
increasing at each transplant, thus accelerates the growth. In other words, the 
growth rate a remains the same, provided the time is properly renormalized (see 
Fig 2(b)). 
 

m(t) = m0 (1+exp (naT) (exp(a∆t)-1))   (10) 
 

 

(a)                                                (b) 

Figure 2: Results from Steel [27]. Up to 10 transplants of cells from the 
tumoral line rat fibroadenoma have been performed, but the curves 
corresponding to only three of them have been reported [9] in 
logarithmic scale.  As discussed in the text, the averaged growth 
curves become increasingly steeper with successive passages, due 
to the aging of the newly transplanted tumor cells. By rescaling the 
time, we obtain a plot (Fig.2b), in which all the curves are 
collapsed into a unique one. 
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