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Abstract  

The vestibular apparatus plays a fundamental role in equilibrioception. It is 
located in the inner ear and it substantially comprises otoliths, which indicate 
linear acceleration, and semicircular canals, which detect rotational acceleration.  
     In this paper models of different complexity of the semicircular canals are 
reported and discussed: a monocanal hydro-elastic model and a three-canals 
model, in which interactions between canals are considered.  
     Different trends are obtained by implementing the two models in a Matlab 
environment. The numerical results of the monocanal model are compared with 
the classical torsion-pendulum model and with literature data; while, for the 
three-canals model, responses to angular velocity directed parallel to the 
physiological axes are reported. 
Keywords: semicircular canals, hydroelastic model, three-canals model, 
mechano-transduction. 

1 Introduction 

The vestibular system is the apparatus that detects information about spatial 
position and movement of the head and of the body. This information is a 
fundamental input to control the posture, the upright position and to coordinate 
eye and head movement. The vestibular is quite a complex system and not all of 
the mechanical-nervous transduction mechanisms are completely known; this is 
also due to the impossibility of directly measuring human nervous signals. 
     Mauro et al. developed a model of the vestibular apparatus to be used for the 
motion cueing algorithm of a movement simulator [1], but it can be also 
effectively employed to better understand the functioning of the system itself or 
with diagnostic aims to evaluate pathologies of the balance system. 
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     In this paper a model of the semicircular canals, which detect only rotational 
movements, is presented.  
     Since its discovery at the end of the XIX century, the transduction biophysics 
of the vestibular apparatus has become an object of interest and in literature there 
are some models that describe the mechanics of the semicircular canals with 
different approximation levels: mass-spring-damping lumped parameters models 
[2, 3] that describe the macro-mechanics of the phenomenon and monocanal [4] 
or three-canals [5] fluidodynamic models.  
     The aim of the development of a new model is to obtain a rigorous 
mathematical description that can be used to validate simpler or linearised 
formulations or as a component in more complete models that account for the 
vestibular-ocular reflex or the mechanical-electric transactions peculiar to the 
semicircular canals. 
     Regarding the geometrical and physiological data of the semicircular canals, 
due to the intrinsic difficulty of a direct measurement, the authors referred to 
literature, considering and comparing, whenever possible, different sources and 
average values were taken.  

2 Physiology of the semicircular canals 

Peripheral apparatus of the vestibular system comprises different organs that 
perform distinct sensorial functions and perceive static and/or dynamic 
movements according to the six d.o.f. that characterise a body that moves in a 
three-dimensional space.  
     To register head movements, or more precisely head movement change, the 
vestibular apparatus comprises two different sensorial structures, both placed in 
the labyrinth of the inner ear: 

 otoliths to detect linear acceleration; 
 semicircular canals to detect angular acceleration. 

     Both sensorial organs contains the same receptors, the hair cells, but they are 
characterised by two different peculiar anatomical structures that determine the 
specificity in detecting linear or angular movements. 
     The semicircular canals (fig. 1) are three three-quarter circular ducts that 
intercommunicate in the utricle and they are filled with a fluid called endolymph. 
According to their position, canals are designated as horizontal, posterior and 
anterior. They are aligned approximately orthogonally to one another and the 
horizontal canal forms a 30° angle with the physiological transverse plane, while 
the superior and posterior canals are aligned roughly at a 45° angle to the sagittal 
plane. Each canal has an expanded end, the ampulla, which opens into the utricle 
and the superior and posterior canals join together at one extremity. 
     In the internal epithelium of the ampulla, next to the utricle, a gelatinous 
structure named the cupula is present; it introduces a discontinuity in the canal 
and the hair cells’ cilia are imbedded inside. The cilia cells operate the 
transduction of a mechanical deformation due to acceleration into nervous 
impulses that will be elaborated by the central nervous system. 
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Figure 1: Physiology of the semicircular canals. 

     The physical principle is the following: when twisting the head, the bone 
structure of the semicircular canals that are integral to it accelerate with the same 
law, while the endolymph, due to inertial effects, moves with a lag, causing a 
relative displacement between the duct and the endolymphatic fluid. This flow 
causes a cupula deformation and a variation of the rest position of the hair cells 
and hence a change of the nerve impulse discharges rate carried by the vestibular 
nerve fibres to the brain stem. 

3 Torsion-pendulum model  

The first mathematical description of the physiology of angular motion detection 
is represented by the torsion-pendulum model first introduced by Steinhausen [6]. 
The single semicircular canal is described using a damped mass-spring model 
subject to an inertial force proportional to the mass. Through the years several 
integrations have been made to this formulation, as measurements on vestibular 
models pointed out that sensations detected during a rotational movement are 
more complex than those predicted by the torsion-pendulum model. Young and 
Oman [7] introduced an adaptation operator in cascade to resolve the difference 
between the perceived responses experimentally measured and the ones predicted 
by the torsion-pendulum model. Zacharias [8] suggested the introduction of a 
further term to also consider neural transduction dynamics. 
     Let us consider the canal schematisation of fig. 2.  

Figure 2: Torsion-pendulum model of a semicircular canal. 
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     The transfer function of the mechanics of the semicircular canals can be 
derived from the balance of the forces acting on the system, which, using the 
Laplace transform, may be written as:  
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where: 
  angular velocity of the canal 
c angular displacement of the semicircular canal duct, considered integral 

with the head and referred to the inertial system; 
e angular displacement of the endolymph, referred to the inertial system; 
k elastic constant 
c coefficient of kinematic viscosity 
m mass of the endolymph; 

     Due to the viscous characteristics of the endolymph, this is an over-damped 
system and eqn. (1) becomes: 
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introducing:  
k/c1    long time constant  

c/m2    short time constant 

     The short time constant is dominant for high frequencies and is defined by the 
ratio of the mass and the viscous damping. On the contrary the long time 
constant, defined as the ratio of the viscous damping term and the stiffness term, 
influences the system behaviour for the low frequency range. 
     The numerical value of the short time constant can be derived by the 
semicircular canal physiology and there is a substantial agreement in assuming 
for man 2=0.005 s [9], while for the value of the long time constant data reported 
in bibliography are discordant. Van Egmond et al. [10], according to verbal 
response of humans subjected to various motion inputs, assumed a long time 
constant of 10 s; Mayne [11] used the audiogyral illusion and estimated a value 
between 8 and 11 s, while Groen [12], using nystagmus records, obtained 16 s.  
     The estimation of the long time constant based on subjective responses is quite 
difficult, as it has to be purged of the effect of neural processes. 
     Assuming that no neural process takes place for vestibular-ocular nystagmus, 
Schmidt et al. [13] calculated 1=18 s; as this result is consistent with the 
consideration of other authors [2, 12, 14] we assumed this value to estimate the 
frequency response of the torsion-pendulum model. 
     Even if the parameters of this lumped parameter model are not easily 
identifiable, this mathematical description remains the most popular tool in 
analysing the behaviour of the semicircular canals. However, the torsion-
pendulum model is unable to describe the displacement of the cupula and its 
interaction with the endolymph. To evaluate the real displacement that describes 
the hair cells models, fluid mechanics are needed.  
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4 Hydroelastic-fluidodynamic monocanal model 

A detailed analysis of the fluid mechanics in a toroidal duct subjected to a 
pressure gradient was presented by Van Buskirk and Grant [4]. Another detailed 
model was obtained by Rabbitt and Damiano [5], using a perfect toroid and 
approximating the cupula as a linear elastic plate. 
     In the present study, in order to develop the monocanal model, the authors 
started the treatment from a straight duct with a circular section subjected to an 
axial motion law. Assuming that the fluid motion in the duct is laminar and that 
the endolymph is a newtonian and incompressible fluid, the Navier-Stokes 
equation for the fluid axial component is: 
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where:  
v  duct acceleration 
 u duct-endolymph relative velocity  
  endolymph density  
  endolymph dynamic viscosity 
 P fluid pressure 
 z axial coordinate  
 r radial coordinate  
 t time 
     The solution of the differential equation, expressed in the Laplace dominium is: 
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where rt is the duct radium, J0 is zero order Bessel’s function and 2 /s    . 

     The semicircular canals can be considered, at least on first approximation, as 
a plane toroid; the canal and the utricle are represented with two different 
sections, subtended respectively by the angles  and , and with internal radius rc 
and ru, as represented in fig. 3. R is the radius of the curvature of the toroid, 
considered constant, while z is the curvilinear coordinate along the duct axis with 
the origin in the cupula. 
     As the fluid velocities in the canal are relatively low and supposing a laminar 
flow, forces and accelerations of the fluid that are not axially directed may be 
neglected. Hence we can assimilate the toroidal lengths to rectilinear ducts with a 
velocity equal to the peripheral velocity of the duct itself. 
     When considering an angular velocity  of the semicircular canal around the 
axis perpendicular to the toroid and passing in the curvature centre, the velocity 
of the fluid relative to the canal is:  
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where cP

z




 is the axial pressure gradient in the canal.  
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Figure 3: Discretization of the semicircular canal for the monocanal model. 

     In eqn. (5) the duct radius is neglected, being R»rc, and the curvilinear 
coordinate varies in the range Rz 0 . 

     Similarly, for the utricle length, where the duct radius ru cannot be neglected 
anymore if compared to the toroid radius R, eqn. (4) becomes: 
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where 
z

Pu




 is the axial pressure gradient in the utricle and the curvilinear 

coordinate varies in the range  RzR   . 

     Observing that the semicircular canal is a closed circuit, the following relation 
between the variation of pressure Pc in the canal length, the variation of 
pressure Pu in the utricle and the pressure difference Pm on the cupula 
membrane can be written: 

mcu PPP                                               (7) 

     For the utricle, the pressure variation Pu can be derived from eqn. (6) and, 
considering the conservation of flow, it can be expressed as a function of the 
fluid velocity relative to the canal velocity, being Ac/Au the ratio of the canal and 
utricle cross sections:  
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     To evaluate the pressure drop on the cupula, this had been modelled as an 
elastic circular membrane clamped at the ampullary wall along its entire 
perimeter and subjected to a distributed load Pm in the axial direction. 
Assuming that cupula and endolymph have the same density [4, 5], the 
membrane deflection can be expressed in the Laplace domain as suc / , 

representing with h the membrane thickness, with rm the external radius of the 
membrane, with Em and m Young’s and Poisson’s modulus, the difference of 
pressure Pm is: 
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     Substituting functions (8) and (9) in eqn. (7) an expression of Pc can be 
derived. By introducing it in eqn. (5), the transfer function of /cu  can be 

pointed out and hence the transfer function between the angular displacement  
corresponding to the membrane deflection and the canal angular velocity is: 
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where coefficient G, M, C and K are respectively: 
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     Comparing expressions (1) and (10), it can be noticed that the transfer 
function of the presented hydroelastic fluidodynamic model has a structure 
analogous to the one derived with the more simple torsion-pendulum model, but 
with the advantage that the characteristic time constants KC1 , CM2  

and the gain KG can be expressed as functions of the system physiological 

parameters. 
     In fig. 4 the graphs of the frequency response  /  for the torsion-pendulum 
model described by eqn. (2) and for the hydroelastic fluidodynamic model are 
shown. For the latter, the mean angular displacement of the cupula is reported. 
The values of the physiological parameters used for the numeric simulation and 
listed in tab. 1 have been extracted from literature [4, 5, 15]. 
     For a further comparison in fig. 4 the frequency response of the Van Buskirk 
and Grant [4] model is also reported. 
     The frequency responses are consistent, also considering the uncertainty of 
the physiological parameters. The perception band of the semicircular canal is in 
the range of 0.1 Hz and 100 Hz, with an attenuation at lower and higher 
frequencies. In the perception band the cupula deflection and the velocity are in 
counter phase, while for lower and higher frequencies the system presents 
respectively a lag of - 90° and - 270°. 
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Figure 4: Frequency response of the mean deflection and angular velocity.  

Table 1:  Anatomical and physiological data used in the numerical models. 

canal curvature radius  
internal radius of the canal 
internal radius of the utricle 
angle subtended by the canal 
angle subtended by the utricle 
membrane radius  
membrane thickness 
membrane Young’s modulus  
membrane Poisson’s modulus 
dynamic viscosity of the endolymph 
density of the endolymph 

R 
rc 
ru 
 
 
rm 
h 

Em 
m 
 


3.175 mm 
0.15 mm 
1.19 mm 
1.4 rad 
0.42 rad 
0.9 mm 
0.57 mm 
0.04 N/m2 
0.5 
10-3 Pas 
1000 kg/m3 

5 Hydroelastic-fluidodynamic three-canals model 

The orientation of the three semicircular canals determines the vestibular 
apparatus sensibility to angular acceleration directed in any direction [16]. In 
general, given a stimulus, each canal answers in a different manner. To evaluate 
the responses it is necessary to individuate the acceleration components directed 
at the canals’ toroids axes and then to study the system fluid-dynamic behaviour.  
     As depicted in fig. 5, the vertical canals, anterior and posterior, join in a 
common segment, with a cross section that is about twice the section of the 
single canal, before converging in the utricle and they came out of it at opposite 
ends. We want to consider, for calculation reasons, a simplified geometry that is 
still close to the anatomical one, analogously to what had been done for the 
monocanal model; the canals had been described as toroids with a circular planar 
section, with each being orthogonal. These planes are oriented in respect of the 
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physiological axes, as shown in fig 5. The utricle is modelled as a segment of the 
horizontal canal with an enlarged section; the anterior and posterior canals share 
the vertical segment with the double section and each shares half a utricle with 
the horizontal canal. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Discretization of the vestibular anatomical geometry. 

     Based on the schematisation reported in fig. 5, it is possible to write the 
relations between pressure in the different segments of the semicircular canals: 

 horizontal canal hcuhm PPP //                           (11) 

 posterior canal pcvupm PPPP // 2         (12) 

anterior canal  acvuam PPPP // 2            (13) 

where Pu is the pressure variation at the utricle ends, Pm the pressure drop on 
the cupula, Pv the pressure variation in the vertical segment shared by the 
anterior and posterior canals and Pc the pressure variation along the canal. 
Subscripts /h /p and /a indicate magnitudes relative respectively to horizontal, 
posterior and anterior canals. 
     Analogously to the monocanalar model, the endolymph is assumed to be a 
newtonian incompressible fluid governed by the Navier-Stokes equations. Using 
continuity of pressure and conservation of flow, after some algebra, the relation 
(14) between the membrane displacement vector of the three canals [h p a] 
and the angular velocity vector projected in the directions perpendicular to the 
canals planes [h p a] becomes: 
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where the matrix coefficients, calculated for the cupula maximum deflexion, 
which is in correspondence to the canal axis, are: 

hor. canal pos. canal 

ant. canal 

vertical segment 

utricle 

x

y 

z

hor. plane

pos. plane 

ant. plane 
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     The nomenclature used in the coefficients expressions has the same 
significance it had in the monocanal model, with the addition of subscripts h p a 
and v to indicate respectively the horizontal, posterior and anterior canal and the 
vertical shared segment; the angle  is the arc subtended by the common vertical 
segment.  

     The frequency responses  /h ,  /p  and  /a  of the cupulae mean 

deflection for three cases of head rotation along the physiological axes: roll (axis 
x), yaw (axis y) and pitch (axis z) are shown in fig. 6.  
     Anthropometrical and physiological data are assumed equal for the three 
canals and are the same as listed in tab. 1, with the addition of  = 0.21 rad. 
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Figure 6: Frequency response of the three canals average cupula deflection 
and angular velocity for: a) roll; b) pitch and c) yaw motion. 

     The pass band is still the same as the monocanal model, but gain values 
change according to the direction of the motion. In particular the horizontal canal 
gain is prevalent for the yaw motion, while for the roll motion it is lower than  
–100 dB. Vertical canals present a behaviour very similar in all three motion 
laws tested. 

6 Conclusions  

In this paper the fluidodynamic analysis of the semicircular canals based on a 
simplified geometry is presented. Both a monocanal model and a three-canals 
model had been described. For the first model results of the frequency response 
between the cupula deflection and the motion law are consistent with the trends 
of the simpler torsional-pendulum model and with other fluidodynamic models 
presented in literature. For the three-canal model in literature experimental 
results are not present, so it would be necessary to collect some data and this is a 
challenging goal. In fact, direct experimental measures are not possible and for 
the indirect measures, exploiting the nystagmus evaluation, it is necessary to also 
take into account the neural answer dynamic. 
     The collection of experimental data is still an open question in research about 
the vestibular system. 
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