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Abstract

A method to study the mechanics of ventricular contraction was developed in
previous publications by the author. In those studies, the active force of the
myocardium is represented as force per unit volume of the myocardium. Other
authors have developed studies in which the active force of the myocardium is
included in the expression of the total stress derived from the constitutive
relations. The purpose of the present study is to show how to make the
connection between these two approaches. Derivation is done in a general way,
expressions for the stress components are derived and application to
experimental data is presented. The possibility of relating the pseudo strain
energy function to the tension generated by the muscular fibre is also shown.

Keywords: cardiac mechanics, mathematical modelling of ventricular
contraction, pressure-volume relation, active force of the myocardium, pseudo
strain energy function.

1 Introduction

In previous studies by the author a method to study the stress-strain relation in
the myocardium was developed in which the active force generated by the
myocardium was represented as force per unit volume of the myocardium [1-6].
This mathematical approach used a cylindrical model of the left ventricle and
was successfully developed by using both large elastic deformation [1, 2] and
linear elasticity [3, 4], the transition from large elastic deformation to linear
elasticity was discussed in [6]. Most other studies that have been developed
focus on the way the expression of the total stress can be derived from the
constitutive relations [9-11].
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In this study the myocardium is represented as a thick-walled incompressible
cylinder in which the myocardial fibres are imbedded in a helical way in a soft
incompressible medium (see fig. 1). The contraction of the cylinder is modelled
is a way to take into consideration torsion and shear, it turns out that their effect
is small for the purpose of the numerical calculation of this study. In the quasi-
static approximation used in this study, inertia forces and viscous forces are
neglected. The total stress induced in the passive medium of the myocardium ¢;

is written in the form 7, =0, +¢,, where g; is the stress induced by the

muscular fibre tension 7" and reflects the directional character of the stress; oy is
the stress resulting from the deformation of the passive medium of the
myocardium (passive medium assumed isotropic). A similar approach can de
found in Spencer [11]. Nevo and Lanir [8] have introduced a quantity similar to
gy as the derivative of a hydrostatic pressure, and Arts et al. [12] have used an
approach where oj;is replaced by a hydrostatic pressure.

The purpose of this study is to show the equivalence of the formalism
developed in [1-6] by the author with the formalism developed by Humphrey
and Yin [9] in which the total stress #; induced in the myocardium is derived
from a pseudo strain energy function W. It is also shown how W can be directly
related to the muscular fibre tension 7, and that the splitting of W = Wi, + Wi
into an isotropic and an anisotropic component [9, 13, 14] is equivalent to the
aforementioned splitting of the total stress ;.

2 Mathematical formalism: first approach

2.1 Equilibrium conditions

This is the approach used in [9, 10], in which the calculation is carried out by
using the total stress ;. By assuming symmetry around the z-axis (solution
independent of #), the conditions of local equilibrium the myocardium (div ¢ = 0)
can be written as follows in cylindrical coordinates

rr

ot t. —t ot
+ rr 00 + r _ 0 (la)
or r 0z

1 o(r’t,,) ot
_2 ( iB) + z0 — 0 (lb)
r or Oz
1 o(rt ot
- (—rz) +—2=0 (10)
r or oz
The stress can be dependent on the z variable, but we shall simplify the
mathematical formalism by assuming that z,,, £,y and ., are independent of z as in
[9]. In this case eqns (1b) and (1c) give
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r’t,, =const = H, rt, =const=H, 2)

The radial stress boundary conditions on the surface of the cylinder are given
by (see fig. 1).

trr (rl) = _IDI trr (rO) = _PO (3)

2.2 Deformation gradient

The contraction of the myocardium is assumed to change the stress free
configuration (R, ®, Z) to the end-diastolic configuration (v, 6.4 z.s) and finally
to (7, 6, z) during the systolic phase according to the relations

vy =", (R), 0, =a,0, z,, =kZ 4)

rzr(red)’ 0=a29ed +l//22ed +Z(red)’ (5)

z= kZZ Zed + kZHeed + a)(red)

which combined together give
r=r(R), 0=0@+yZ+y(R), z=k Z+k,0+w(R) (6)

The deformation gradient F; for the transformation from the stress free
configuration (R,6, Z) to the end-diastolic configuration (7., 6.4 z.) in
cylindrical coordinates is given by [10]

oy Loy Oy ] %o
OR R 00 oz dR
Fvl — r€d aeed red aeed ’/,Ed 89&1 — 0 al red 0 (7)
OR R 00 oz R

0z,, 10z, 0z, 0 0 k,
L OR R 00 oz
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The deformation gradient F, for the transformation from the end-diastolic
configuration (r.; G.4 z.s) to the final configuration (r, 6 z) is given by

i or 1 or or dr 0 0
arre red aeed aZ ed dl" ed
F, = rﬁ . 09 r 00 =|r A azl ry, )
ared r ed aeed aZ ed dl" ed r ed
0z 1 oz 0z do Ky i
L ared v ed ae@d aZed ] L dr ed red = |

The deformation gradient F' = F, F; of the combined transformation is given
by

o 1o o) |ar

- —= = 0 0
OR R 00 oz dR
F: In% L% ’/-% — rd_Z aL rw (9)
OR RO® 07 dR R

&l x| lde  k
| 07 R 0O 0Z1 | dR R 7

where a = ma;, v = wk;, ko = kya;, k. = kyk;. By assuming that the
transformations take place at constant volume, the incompressibility constraint
can be written as follows

I, =(det F)* =(det F,)*(det F,)* =1 (10)

where /; is the third strain invariant. By calculating the determinants in eqn (10)
one obtains

ﬂzi, Kr* —R* =Kr’ —R’ (11)
dR Kr
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dr, R
Lt _ > Kry —R* =K —R} (12)
dR Kr,

dr Ted 2 2 2 2

—_—= K,r*—r, =K,r’ —r, (13
dr,, K,r g ¢ ? ¢ )

We have K; = aik; = det(F;), K; = ks, - Wwoky9 = det(F>) and K = K;K, =
d@t(F) = (l/klagkgz - Oljkzgkj W, = (Zkz - kg!//, with a = (291248 kz = k]kgz, V= l//zk],
k9 = aikye. The inner radii are respectively R; and r; in the stress free
configuration and during the systolic phase.

A muscular fibre in the myocardium is supposed to have a helical form on a
cylindrical surface. In the undeformed configuration a unit vector /N with fibre
angle 7{R) is transformed into a vector # in the deformed configuration with
fibre angle y(7) calculated with respect to the circumferential direction. With Ay
representing the stretch ratio in the direction of the muscular fibre, we have

n =[0,cos(y(r),sin(y(r)]", N =[0,cos(I"(R),sin(T’(R)]" (14)

with

n:LF.N (15)

N

By using eqns (9) and (15) we get

cos(y(r)) = /% [% cos(I(R)) + (ry) sin(I'(R))] (16)
) 1 k, )
sin(y(r)) = /1—[? cos(I'(R)) + k_ sin(I'(R))] (17)

2.3 Constitutive relations

Relations between the components of the stress and deformation are known as
constitutive relations. By assuming transverse isotropy with respect to the z-axis
of the cylinder, Humphrey and Yin [9] have focused on a subclass of transverse
isotropic material with pseudo strain energy function /¥ given by the expression

W:W(Ila//iN) (18)

where 1, is the first strain invariant , = #(B), and B = F.F" is the left Cauchy-
Green deformation tensor. Written explicitly we have
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Figure 1: Cross-section of a cylinder representing the left ventricle. The
dotted circle represents the projection of a helical fibre on the
cross-section. D,(r) is the radial active force/unit volume of the
myocardium. P; is the ventricular pressure, P, is the outer pressure,
r; is the inner radius, r, is the outer radius, # = b — a is the
thickness of the myocardium.

Ay ,dr dy dr do '
dR dR dR dR dR
dr dy dy ., oa’r’ ) dy do oark,
B=\r——=—= )" + + ——+ +
"war VR TR YY) TR TV
2
ﬂd_a) rd_;(d_a)+ar/(279 +rwkz (d_a))z +k_‘92+k22
L dR dR dR dR R dR R i
(19)

The Cauchy stress ¢ (force/current area) can be expressed by using eqn (18) in
the form [9]

t, =—po; +2W B, + W Aynn,; (20)
ow ow e
where W, = and W,, = ——, p is a Lagrange multiplier introduced to
oI, oA,

express the incompressibility condition for the myocardium. The first two terms
in eqn (20) have an isotropic symmetry and the third term (the components of #;
are shown in eqn (14), part one) has a directional character corresponding to the
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direction of the muscular fibre in the myocardium. We are now in a position to
make the junction with the second approach developed in [1-6].

3 Mathematical formalism: second approach

3.1 Equilibrium conditions

We shall now see that it can be more instructive to work with the components o
and g; of t; = oy + q;. T(r,z) is the stress in the direction of the muscular fibre in
the myocardium. By assuming that a muscular fibre in the myocardium has a
helical cylindrical shape as in the previous section, one can derive for the
components of the stress g;; the following relations as in [2, 15]

q,=0,  qgp=T(osy(r)*,  q.=T(iny(r)’

q., =T siny(r)cosy(r), 4,0 =94, =0 (21)

It is also possible to write the following relations
— r 2 _ _ 2
D =—(cosy(r)), q., =rD, tany, q.,=rD tan" y (22)
r

where D, is obtained by substituting #; = o; + ¢; in eqns (1) and by writing the
terms containing g;; in the following way

D :qﬁ, Dé):_@q_zf)

oq
, D =-—1= 23
: r Oz @)

: 0z

The quantities D,, Dy and D, have the units of force/unit volume of the
myocardium expressed in the three orthogonal directions of a cylindrical
coordinate system. By using this notation, eqns (1) can be written in the form

0o, 0O, —0, N oo, _D,- oo, N O, — Oy +£(02r—j D dz)
or r Oz or r 0z z
(24a)
1 0(r*c,,) 0o, 1 0¢r’c,,) 0O
= 0l D=~ (5., - |D,dz) (24b
},.2 ar aZ 0 ]/'2 8}" 62( z0 .!. 0 ) ( )
l@(rorz)_i_éazz D :la(rarz) +£

-\ D.d 24
r or Oz oy or Oz (@ -!. 42) (240)
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Because t,9 = 7,9 (q,0=0) and t,. = o, (¢. = 0) we can write in a way similar

to eqns (2)

2 — — — —
r-o,, =const=H, ro, =const=H,

(25)

We assume that no external moment is applied to the myocardium,

consequently the moment of forces M around the z-axis is zero

M = 27[!(0‘26 +q.,)r’dr=0

which gives
0.0 =9z
Equilibrium of forces in the longitudinal direction gives
o.+q.+7, =0
where 7, is the average traction on the cross-section and is given by [8]

2 2
_Br—Fr,

av 2 2
r=r

r

It is assumed that the average stress 7, is independent of » and z.

3.2 Constitutive relations

(26)

27)

(28)

(29)

It is assumed that the muscular fibre tension 7(r,z), and consequently g, is
uniformly distributed throughout the myocardium. By writing #; = o; + g; and

by comparing eqns (21) with the last term of eqn (20) we can write
q; =WyAynn,
with W,y appropriately chosen such that
T=W,A,
From eqn (20), the stress o;; can be expressed as follows

o, = —péij + 2W1BU.
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This last equation can be written with the help of eqn (19) in explicit form as
follows

dr dy H,
WL L 33
Tro =S R AR T 9
H
o, =2, drde _H, (34)
dR dR 7
dy do ark
o =20 PR Rf ryk_] (35)
do., k02 2
=—p+2W[(—) +—=+k 36
O-zz p 1[( dl") Rz z] ( )
d or
oo =—p+2M[<rd—f)2 HC) T+ rw)’] (37)
, =—p+2W, (—) p+2W, (—) (38)

These equations are used in the experimental application described in what
follows. The term D, appearing in eqn (24a) is similar, but not identical, to the
introduction of a derivative of a hydrostatic pressure in eqn (26) of [8].

4 Application and results

The fibre angle y(7) (referred to the circumferential direction) is supposed to be
constant with respect to the axial and circumferential directions. The radial
variation of the fibre angle is supposed to be linear and given by

v —r r—=r
7/ :yend( - )+7/epi(—l) (39)
- r, —r

o i o i

where y,,, = 45° is the fibre angle at the endocardium, and y,,; = - 45 is the fibre
angle at the epicardium. The dimensions of the left ventricle in the diastolic
configuration are outer radius , = 3.38 cm, inner radius »; = /.02 cm and length
/= 3.06 cm as taken from experiment on dog reported in Feit [7]. The
corresponding radii in the reference stress free configuration were estimated
from eqn (11), part two, as R, = 3.4474 cm and R; = 1.1 cm. The tension T
developed by the muscular by the fibre near the end-diastolic phase is taken from
fig. 7a of Feit [7] and is reproduced in fig. 2 (left) of this study, fig. 2 (right)
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80 ,

o |
= o
T

th
=)

g

T

D in mrmH

%)
=)

fibre tension in mmHg
e
=

20r

1 2 3 4 1 2 3 4
radial distance in cm radial distance in cm

0 1 i

Figure 2: Radial variation from endocardium to epicardium of the fibre
tension 7T reproduced from [7] (left), and of the radial active
force/unit volume of the myocardium D, (right).

shows the variation of D, calculated from eqn (22), part one and (39). Similarly
the active stress components ¢., and ¢., are calculated respectively from eqn
(22), parts two and three, o,y and o, are calculated respectively from eqns (27)
and (28) and shown in fig. 3. We took the ventricular pressure P; = /0 mmHg
and the epicardial pressure P, = 0 mmHg in the calculation of z,, from eqn (29).
The two quantities dy/dr and dw/dR are small and have be neglected in the
calculation that follows. Consequently from eqns (35) — (38) one can derive the
following equation to calculate o,

0.0 _ (kyom)/ R* + k. yr (40)
c.—-0o, kIR +k>-R*/I(Kr)
and the following equation to calculate 0y,
o., (kyor)/ R* +k_yr m

Op—0, (ar)’ /R +(yr)’ —R*[(Kr)
The radial variation of o, and oy is shown respectively in the left and right

side of fig. 4.
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Figure 3: Radial variation from endocardium to epicardium of the stress og
(left), and of the axial stress o, (right).
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Figure 4: Radial variation from endocardium to epicardium of the radial

stress o, (left), and of the circumferential stress oy (right).
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Figure 5: Radial variation of the total circumferential stress #y5 from

endocardium to epicardium.

In the calculation of o;,. and oy we have made use of the two following
conditions, first the incompressibility condition

ok, —yk, =K (42)

The second condition is that numerator of eqn (41) for o, is zero for
Feero = 2.2 cm from fig. 3 (R’..,, = 5.1160 from eqn (11), part two), which gives

ok, +yk_R. =0 (43)

zero

Eqns (42) and (43) are solved to express « and y in terms of k, and kg as
follows

k,K
VR, “
4 z ~zero
kZ KRzze‘VO
(45)

a=——F"
2 2p2
kﬁ + kz Rzero
These values of wand o are substituted into eqn (40) evaluated at 7; (g;, = -

P; = 10 mmHg) and at r, (g, = -P, = 0) with o, calculated from eqn (28). The
two equations obtained in this way are solved by using the Newton iteration
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algorithm to calculate the two roots ky and k., of a system of two coupled
equations. For r; = 1.02 cm, r, = 3.38 cm, K = 1.028, R; = 1.1 cm, R, = 3.4474
cm, we have calculated ky = -0.1472, k. = 1.0043, eqns (44) and (45) give a =
1.0228 and y = 0.0057. These are the values used to calculate the results of
fig. 4.

From the results shown in figs 3 to 6, the radial variation of each of the stress
components appears to be similar to that reported in ref. [9] with a difference of
sign probably due to the fact that we use the convention that a negative stress
represents compression, a positive stress represents tension. It is also important
to note the difference between the stress components oy and #; as is clear for
instance by comparing fig. 4 (right) and fig. 5, and also how the three quantities
W, W,y and D, can be expressed directly in terms of the muscular fibre T.

90 , : 400 ,
B0 b4 e ........... ............ 3o -
?D I TR ............ ............ EDD
BObdne SRR SRPNTIN 4
: ; 100
IR TOY ........... .......... i
= : : -0
: : =
§ a0kl ........... ERREETETEE ]
: § 100
30 ......... , ........... ............
? : =200
2D ........... ............ ............
. S A il -300
0 : ‘ -400 i i
1 2 3 4 1 2 3 4
radial distance in cm radial distance in cm
Figure 6: Radial variation from endocardium to epicardium of W,y (eqn

(31)) (left), and of W; (eqn (38)) (right).
5 Conclusion

By introducing the concept of radial active force/unit volume of the
myocardium, we have shown that it is possible to calculate the stress induced in
the passive medium of the myocardium and the components of the active stress
generated by the muscular fibre. One should note that all the calculations have
been carried out without having to assume a model for the pseudo strain energy
function; instead knowledge of the muscular fibre stress generated in the
direction of the muscular fibre was necessary for our calculation. It is also
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evident that the trend in the literature to split the pseudo strain energy function
into an isotropic and a directional component is equivalent to the splitting of the
total stress into two components as explained in this study.
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