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Abstract 

A method to study the mechanics of ventricular contraction was developed in 
previous publications by the author. In those studies, the active force of the 
myocardium is represented as force per unit volume of the myocardium. Other 
authors have developed studies in which the active force of the myocardium is 
included in the expression of the total stress derived from the constitutive 
relations. The purpose of the present study is to show how to make the 
connection between these two approaches. Derivation is done in a general way, 
expressions for the stress components are derived and application to 
experimental data is presented. The possibility of relating the pseudo strain 
energy function to the tension generated by the muscular fibre is also shown.  
Keywords: cardiac mechanics, mathematical modelling of ventricular 
contraction, pressure-volume relation, active force of the myocardium, pseudo 
strain energy function. 

1 Introduction 

In previous studies by the author a method to study the stress-strain relation in 
the myocardium was developed in which the active force generated by the 
myocardium was represented as force per unit volume of the myocardium [1-6]. 
This mathematical approach used a cylindrical model of the left ventricle and 
was successfully developed by using both large elastic deformation [1, 2] and 
linear elasticity [3, 4], the transition from large elastic deformation to linear 
elasticity was discussed in [6]. Most other studies that have been developed 
focus on the way the expression of the total stress can be derived from the 
constitutive relations [9-11].  
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     In this study the myocardium is represented as a thick-walled incompressible 
cylinder in which the myocardial fibres are imbedded in a helical way in a soft 
incompressible medium (see fig. 1). The contraction of the cylinder is modelled 
is a way to take into consideration torsion and shear, it turns out that their effect 
is small for the purpose of the numerical calculation of this study. In the quasi-
static approximation used in this study, inertia forces and viscous forces are 
neglected. The total stress induced in the passive medium of the myocardium tij 
is written in the form ijijij qt +=σ , where qij is the stress induced by the 

muscular fibre tension T and reflects the directional character of the stress; σij is 
the stress resulting from the deformation of the passive medium of the 
myocardium (passive medium assumed isotropic). A similar approach can de 
found in Spencer [11].  Nevo and Lanir [8] have introduced a quantity similar to 
qij as the derivative of a hydrostatic pressure, and Arts et al. [12] have used an 
approach where σij is replaced by a hydrostatic pressure.  
     The purpose of this study is to show the equivalence of the formalism 
developed in [1-6] by the author with the formalism developed by Humphrey 
and Yin [9] in which the total stress tij induced in the myocardium is derived 
from a pseudo strain energy function W. It is also shown how W can be directly 
related to the muscular fibre tension T, and that the splitting of W = Wiso + Waniso 
into an isotropic and an anisotropic component [9, 13, 14] is equivalent to the 
aforementioned splitting of the total stress tij.    

2 Mathematical formalism: first approach 

2.1 Equilibrium conditions 

This is the approach used in [9, 10], in which the calculation is carried out by 
using the total stress tij. By assuming symmetry around the z-axis (solution 
independent of θ), the conditions of local equilibrium the myocardium (div t = 0) 
can be written as follows in cylindrical coordinates 
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     The stress can be dependent on the z variable, but we shall simplify the 
mathematical formalism by assuming that tzr, tzθ and tzz are independent of z as in 
[9]. In this case eqns (1b) and (1c) give 
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     The radial stress boundary conditions on the surface of the cylinder are given 
by (see fig. 1). 
 

oorriirr PrtPrt −=−= )()(                                     (3) 

2.2 Deformation gradient 

The contraction of the myocardium is assumed to change the stress free 
configuration (R,Θ, Z) to the end-diastolic configuration (red, θed, zed) and finally 
to (r, θ, z) during the systolic phase according to the relations 
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which combined together give 
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     The deformation gradient F1 for the transformation from the stress free 
configuration (R,Θ, Z) to the end-diastolic configuration (red, θed, zed) in 
cylindrical coordinates is given by [10] 
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     The deformation gradient F2 for the transformation from the end-diastolic 
configuration (red, θed, zed) to the final configuration (r, θ, z) is given by  
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     The deformation gradient F = F2.F1 of the combined transformation is given 
by 
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where α = α2α1, ψ = ψ2k1, kθ = k2θα1, kz = k2zk1. By assuming that the 
transformations take place at constant volume, the incompressibility constraint 
can be written as follows 
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where I3 is the third strain invariant. By calculating the determinants in eqn (10) 
one obtains    
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     We have K1 = α1k1 = det(F1), K2 = α2k2z - ψ2k2θ = det(F2) and K = K1K2 = 
det(F) = α1k1α2k2z - α1k2θk1ψ2 = αkz - kθψ, with α = α1α2, kz = k1k2z, ψ = ψ2k1, 
kθ = α1k2θ. The inner radii are respectively Ri and ri in the stress free 
configuration and during the systolic phase.  
     A muscular fibre in the myocardium is supposed to have a helical form on a 
cylindrical surface. In the undeformed configuration a unit vector N with fibre 
angle Γ(R) is transformed into a vector n in the deformed configuration with 
fibre angle γ(r) calculated with respect to the circumferential direction. With λN 
representing the stretch ratio in the direction of the muscular fibre, we have  
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     By using eqns (9) and (15) we get 
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2.3 Constitutive relations 

Relations between the components of the stress and deformation are known as 
constitutive relations. By assuming transverse isotropy with respect to the z-axis 
of the cylinder, Humphrey and Yin [9] have focused on a subclass of transverse 
isotropic material with pseudo strain energy function W given by the expression 
 

),( 1 NIWW λ=                                            (18) 
 
where I1 is the first strain invariant I1 = tr(B), and B = F.FT is the left Cauchy-
Green deformation tensor. Written explicitly we have 
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Figure 1: Cross-section of a cylinder representing the left ventricle. The 
dotted circle represents the projection of a helical fibre on the 
cross-section. Dr(r) is the radial active force/unit volume of the 
myocardium. Pi is the ventricular pressure, Po is the outer pressure, 
ri is the inner radius, ro is the outer radius, h = b – a is the 
thickness of the myocardium. 
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     The Cauchy stress t (force/current area) can be expressed by using eqn (18) in 
the form [9] 
 

jiNNijijij nnWBWpt λδ λ++−= 12                               (20) 
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express the incompressibility condition for the myocardium. The first two terms 
in eqn (20) have an isotropic symmetry and the third term (the components of ni 
are shown in eqn (14), part one) has a directional character corresponding to the 
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direction of the muscular fibre in the myocardium. We are now in a position to 
make the junction with the second approach developed in [1-6]. 

3 Mathematical formalism: second approach 

3.1 Equilibrium conditions 

We shall now see that it can be more instructive to work with the components σij 
and qij of tii = σij + qij. T(r,z) is the stress in the direction of the muscular fibre in 
the myocardium. By assuming that a muscular fibre in the myocardium has a 
helical cylindrical shape as in the previous section, one can derive for the 
components of the stress qij the following relations as in [2, 15] 
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     It is also possible to write the following relations  
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where Dr is obtained by substituting tij = σij + qij in eqns (1) and by writing the 
terms containing qij in the following way 
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The quantities Dr, Dθ and Dz have the units of force/unit volume of the 
myocardium expressed in the three orthogonal directions of a cylindrical 
coordinate system. By using this notation, eqns (1) can be written in the form 
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     Because trθ = σr θ (qrθ = 0) and trz = σrz (qrz = 0) we can write in a way similar 
to eqns (2)  
 

1
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     We assume that no external moment is applied to the myocardium, 
consequently the moment of forces M around the z-axis is zero 
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which gives 
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     Equilibrium of forces in the longitudinal direction gives 
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where τav is the average traction on the cross-section and is given by [8] 
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     It is assumed that the average stress τav is independent of r and z. 

3.2 Constitutive relations 

It is assumed that the muscular fibre tension T(r,z), and consequently qij, is 
uniformly distributed throughout the myocardium. By writing tij = σij + qij and 
by comparing eqns (21) with the last term of eqn (20) we can write 
 

jiNNij nnWq λλ=                                                   (30) 
 
with WλN appropriately chosen such that  
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     From eqn (20), the stress σij can be expressed as follows   
 

ijijij BWp 12+−= δσ                                     (32) 
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     This last equation can be written with the help of eqn (19) in explicit form as 
follows 
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     These equations are used in the experimental application described in what 
follows. The term Dr appearing in eqn (24a) is similar, but not identical, to the 
introduction of a derivative of a hydrostatic pressure in eqn (26) of [8]. 

4 Application and results 

The fibre angle γ(r) (referred to the circumferential direction) is supposed to be 
constant with respect to the axial and circumferential directions. The radial 
variation of the fibre angle is supposed to be linear and given by 
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where γend = 45o is the fibre angle at the endocardium, and γepi = - 45o is the fibre 
angle at the epicardium. The dimensions of the left ventricle in the diastolic 
configuration are outer radius ro = 3.38 cm, inner radius ri = 1.02 cm and length 
l = 3.06 cm as taken from experiment on dog reported in Feit [7]. The 
corresponding radii in the reference stress free configuration were estimated 
from eqn (11), part two, as Ro = 3.4474 cm and Ri = 1.1 cm. The tension T 
developed by the muscular by the fibre near the end-diastolic phase is taken from 
fig. 7a of Feit [7] and is reproduced in fig. 2 (left) of this study, fig. 2 (right) 
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Figure 2: Radial variation from endocardium to epicardium of the fibre 
tension T reproduced from [7] (left), and of the radial active 
force/unit volume of the myocardium Dr (right). 

shows the variation of Dr calculated from eqn (22), part one and (39). Similarly 
the active stress components qzθ and qzz are calculated respectively from eqn 
(22), parts two and three, σzθ and σzz are calculated respectively from eqns (27) 
and (28) and shown in fig. 3.  We took the ventricular pressure Pi = 10 mmHg 
and the epicardial pressure Po = 0 mmHg in the calculation of τav from eqn (29). 
The two quantities dχ/dr and dω/dR are small and have be neglected in the 
calculation that follows. Consequently from eqns (35) – (38) one can derive the 
following equation to calculate σrr  
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and the following equation to calculate θθσ  

22222

2

)/()(/)(
/)(

KrRrRr
rkRrk z

rr

z

−+
+

=
− ψα

ψα
σσ

σ θ

θθ

θ                    (41) 

     The radial variation of σrr and σθθ is shown respectively in the left and right 
side of fig. 4. 
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Figure 3: Radial variation from endocardium to epicardium of the stress σzθ  
(left), and of the axial stress σzz (right). 

 

Figure 4: Radial variation from endocardium to epicardium of the radial 
stress σrr (left), and of the circumferential stress σθθ (right). 
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Figure 5: Radial variation of the total circumferential stress tθθ from 
endocardium to epicardium. 

     In the calculation of σrr and σθθ we have made use of the two following 
conditions, first the incompressibility condition 

Kkkz =− θψα                                                (42) 

     The second condition is that numerator of eqn (41) for σzθ  is zero for  
rzero = 2.2 cm from fig. 3 (R2

zero = 5.1160 from eqn (11), part two), which gives  

02 =+ zeroz Rkk ψα θ                                               (43) 

     Eqns (42) and (43) are solved to express α and ψ in terms of kz and kθ as 
follows 
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     These values of ψ and α  are substituted into eqn (40) evaluated at ri (σrr = - 
Pi = 10 mmHg) and at ro (σrr = -Po = 0) with σzz calculated from eqn (28). The 
two equations obtained in this way are solved by using the Newton iteration 
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algorithm to calculate the two roots kθ and kz of a system of two coupled 
equations. For ri = 1.02 cm, ro = 3.38 cm, K = 1.028, Ri = 1.1 cm, Ro = 3.4474 
cm, we have calculated kθ = -0.1472, kz = 1.0043, eqns (44) and (45) give α = 
1.0228 and ψ = 0.0057. These are the values used to calculate the results of 
fig. 4. 
     From the results shown in figs 3 to 6, the radial variation of each of the stress 
components appears to be similar to that reported in ref. [9] with a difference of 
sign probably due to the fact that we use the convention that a negative stress 
represents compression, a positive stress represents tension. It is also important 
to note the difference between the stress components σij and tij as is clear for 
instance by comparing fig. 4 (right) and fig. 5, and also how the three quantities 
W1, WλN and Dr can be expressed directly in terms of the muscular fibre T.      

 
Figure 6: Radial variation from endocardium to epicardium of WλN (eqn 

(31)) (left), and of W1 (eqn (38)) (right).  

5 Conclusion 

By introducing the concept of radial active force/unit volume of the 
myocardium, we have shown that it is possible to calculate the stress induced in 
the passive medium of the myocardium and the components of the active stress 
generated by the muscular fibre. One should note that all the calculations have 
been carried out without having to assume a model for the pseudo strain energy 
function; instead knowledge of the muscular fibre stress generated in the 
direction of the muscular fibre was necessary for our calculation. It is also 
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evident that the trend in the literature to split the pseudo strain energy function 
into an isotropic and a directional component is equivalent to the splitting of the 
total stress into two components as explained in this study.     
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