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Abstract 

In this paper, wavelet scalogram is being used. The wavelet scalogram presents 
some disadvantages. This is particularly true for time-frequency analysis and 
representation which present inconvenient cross-terms. MMG signals (Mechano-
myograms) are acquired via a home probe high sensitive optical sensor. The data 
obtained from 2 healthy subjects and 2 patients sat and tested under drastic 
conditions are analyzed to characterize the dynamic properties of the MMG and 
to determine their frequency contents as well.  We developed the reassignment 
form of the scalogram which improves its resolution and readability. A plot of 
the scalogram contours is also presented to test the direct readability of the 
scalogram representations. Spectra features are extracted and relevant parameters 
are assessed such as the power spectral density, the mean frequency, the average 
frequency and the well known ratio HF% that characterizes the dynamic 
characteristics of the tested muscles. For that purpose, the number of subjects 
had been increased to 24 healthy subjects and up to 18 patients affected by 
different specific muscular diseases.  
Keywords: MMG Signals (Mechano-myograms), Reassigned Wavelet 
Scalogram, power spectral density, mean and average frequencies, MMG rms 
value, MMG average value, HF % ratio value. 

1 Introduction  

Muscular sounds actually known as Mechano-myograms (MMG signals) are 
acquired with the help of a high sensitive optical sensor. These signals are non-
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stationary and of random form with a very low amplitude. The study is focused 
on the characterization of their frequency contents and the extraction of spectra 
features that represent their dynamic properties. For that purpose we tested 
forearm muscles (e.g. Flexors) of many healthy subjects and patients. Time-
frequency analysis was implemented to overcome the shortcomings of the FFT 
analysis. Among several TFA methods, was the most popular called Hitherto 
method [1, 2, 3], who initiated the time-frequency plane. Hitherto method was 
specifically devoted to the analysis of non stationary signal, [2, 3]. TFA methods 
revealed their limitations on finding a good trade-off between time and 
frequency resolutions. The limitation imposed by the Heisenberg-Gabor 
inequality [1, 2, 3, 4, 5, 6, 10], which made the trade-off unavoidable compelled 
the authors to find a solution. Thus, a compromise was to be found between time 
and frequency resolutions for whatever non stationary signal. To overcome these 
drawbacks, at the same time, other authors [2, 3, 4, 5, 6, 10, 14], proposed other 
time varying signal analysis tools on a concept of scale rather than frequency 
such as the Wavelet scalogram [2, 6]. Other tools like the affine smoothed 
version of Pseudo-Wigner-Ville distribution [2, 10], were implemented either. 
However, bilinear time-frequency distributions such as Wigner-Ville distribution 
have good concentration in time-frequency plane but present the disadvantage of 
interference terms (cross-terms) that can blur the readability in the time 
frequency plane of auto-terms (significant). Many attempts had been tried by the 
authors to overcome these inconvenient drawbacks. Unfortunately, those 
attempts were all tending to a loss in time-frequency concentration, [9, 10, 11, 
12, 14, 15, 16]. The Wavelet scalogram is limited by the Heisenberg-Gabor 
inequality and presents the same weaknesses in the time scale-plane. To remove 
these shortcomings, authors implemented a modified form of the wavelet 
scalogram called the reassignment method of the wavelet scalogram [1, 2, 3, 4, 
6, 12]. This method preserved energy properties and made both time and scale 
resolutions rightly enhanced.  

2 Wavelet scalogram background  

2.1 Continuous wavelet scalogram 

The concept of the continuous wavelet scalogram is to subdivide a signal x(t) 
into a set or a family of zero mean functions called the “wavelets” derived from 
an elementary function Ψ (the “mother wavelet”) by translation in time and 
dilation in scale of the later. Then the following relation is tenable, [1, 2, 5, 6, 12, 
14, 15,16]:  
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The parameter a corresponds to a scale factor. Time and frequency resolutions 
are limited by the Heisenberg-Gabor inequality, [1, 2, 3, 4, 5]. 

 © 2007 WIT PressWIT Transactions on Biomedicine and Health, Vol 12,
 www.witpress.com, ISSN 1743-3525 (on-line) 

332  Modelling in Medicine and Biology VII



 

2.2 Wavelet scalogram   

The wavelet scalogram is then defined by:  

( ) ( ) 2,,,, ψatCWTaTxSC x= ,   where:  ψ  is the wavelet function.   (2) 
The scalogram is interpreted as the smoothed version of the Pseudo-Wigner-
Ville distribution. One should refer to [2, 6, 10, 12, 14, 15, 16], to learn more.  

2.3 Reassignment method of the wavelet scalogram 

The concept of reassignment was based on the previous assumptions. As 
depicted, one has to find a compromise between time and frequency resolutions. 
It appears that it was necessary to enhance the readability of the scalogram and 
make the concentration of significant terms goodly localized in the scalogram 
and get more improved readability reducing in maximum cross-terms. So we 
chose the reassignment form to attain these goals, [2, 6]. 

3 Methods  

3.1 Subjects  

Four adults, 2 healthy subjects and 2patients were tested in this study. The MMG 
signals were acquired via a home probe. Many other patients affected with 
muscle diseases such as current dystrophies and atrophies were tested. Some of 
them were affected by Steinert and one by Marie-Charcot-Tooth disease.  

3.2 Data analysis  

3.2.1 Power Spectral Density 
Power spectral density is to be extracted from the MMG’s spectra. This 
parameter is estimated using the Welsh method and then noted as:  

( ) ( )fS
L

fS
L

l
l∑=

1
;      where: l  represents the index of the interval,   (3) 

In respect to the frequency limits of the MMG’s range (e.g. [0 45] Hz). 
 
3.2.2 The average frequency  
The average frequency in a determined range of frequencies is defined by: 
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3.2.3 Mean frequency  
The mean frequency is given by: 
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where:  meanF   is the mean frequency and )( fS  is the power spectral density. 
 
3.2.4 Mean value of the MMG signal  
The mean value of MMG corresponds to the mean time average value of the 
rectified MMG signal (in micrometers) and given by: 

rectified
MMGmean YV = ;                                         (6) 

where: MMGY  is the amplitude of the MMG signal.  
 
3.2.6 Root-mean-square value of the MMG 
The root-mean-square value of the MMG signal is calculated from the previous 
equation of the power spectral density in the limits of the MMG’s determined 
frequency range [0 45] Hz and is determined by: 
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3.2.7  The ratio HF% 
This ratio was defined as the ratio of the power spectral density in the range of [0 
45] Hz to the power spectral density in the range of [6 45] Hz for whatever type 
of muscles, thus: 
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HF  ; This ratio reflects the contribution of the fast fibers,   (8)            

      
3.2.8  Statistics  
24 healthy subjects were tested and with patients up to 18 subjects in clinical 
environment. Then, for each extracted feature, a statistical analysis is proceeded 
with the help of the well-known Origin 6.1 software.  

4 Results and discussion  

4.1 Reassigned wavelet scalogram results 

The results presented in this section concerns two healthy subjects and two 
patients respectively. The first sub-section of results is organized so that for each 
MMG signal there exists four sub-windows. The first sub-window gives the 
display of the acquired MMG signal, whereas the second shows the power 
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spectral density of the analyzed signal. The third sub-window displays the 
reassigned wavelet scalogram and finally the fourth illustrates the contours plot 
of the scalogram.  
     The healthy subjects are named Heal.1 and Heal.2, whereas patients are 
named Pat.1 and Pat.2. Considering figure 1 which gives the results for the 
healthy subjects, it can be noticed that a good concentration of energy peaks 
around 10 Hz and 20 Hz and a poor one around 12 Hz and 15 Hz [Heal. 1]. 
Reassigned wavelet contours plot shows clearly this assertion and reveals several 
frequencies at the same instant. The power spectral density displayed shows a 
concentration of frequencies in the lower range of the power spectrum whose 
frequency axis is normalized to the highest value. These observed differences on 
frequencies at different instants are mainly due to the fact that force increases 
along with the increasing number of fibers which are recruited since contraction.  
     This process seems to evolve steadily until the subject is in a state of total 
exhaustion. Readability of reassigned wavelet scalograms for Heal.2, indicate 
that energy peaks are distributed around 5 Hz and 12 Hz with a high level of 
brightness and relatively poor around 10 Hz, 15Hz, and 20 Hz [Heal.2]. 
Nevertheless, we should notice the appearance of the blurring 7 Hz (Heal.2) 
well-known by the clinicians to correspond to only muscle tremors. The 
examination of the power spectral density yields the same observation as in the 
case of Heal.1. In the case of patients, Figure 2 gives the patients results which 
are organized as in the case of healthy subjects. It can be seen from the displayed 
reassigned scalograms that Pat.1 had developed a very poor effort probably due 
to the nature of the muscular disease and hence an awful grasping of the strain 
gauge as the scalogram shows few energy peaks around 5 Hz and 10 Hz and a 
very small number with very poor energy around 15 Hz and 20 Hz. Only tremors 
and clear noticeable large transients are observed in the acquired MMG signal. 
The contours plot neatly reveals this fact. Real exhaustion at the beginning of the 
measurement protocol is obvious. Similar observations are noticed in the second 
case (Pat.2) who did his best to grasp firmly the strain gauge but unsuccessfully 
and was unable to fulfil the fixed force consigns of the experimental protocol.  
     The generated frequencies revealed by both the scalogram and the contours 
plot are confusedly dispersed around 5 Hz and 20 Hz. with lower intensities. 
Obviously, only fast fibers responded to the excitation as the frequencies are 
localized in the high frequency range of the most significant MMG’s frequency 
range. Patients were not able to stand more than 15 seconds of experimentation.  

4.2 Statistical results and analysis  

Figures 3 – 6 provide graphic representations of the extracted spectra features of 
the MMG signals namely: Average frequency versus average force, mean 
frequency versus average force, MMG amplitude rms value versus maximum 
force, HF% ratio versus maximum force, for either healthy subjects or patients.  
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Figure 1: Results of 2 Healthy subjects. For each of them, first sub-window 
gives the acquired MMG signal, second sub-window the power 
spectral density of his MMG signal. Third and fourth illustrate 
respectively the reassigned wavelet scalogram of the MMG signal 
and its contours plot.   
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Figure 2: Results of 2 unhealthy subjects. For each of them first sub-window 
gives the acquired MMG signal, second sub-window the power 
spectral density of his MMG signal. Third and fourth illustrate 
respectively the reassigned wavelet scalogram of the MMG signal 
and its contours plot.  
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     The subjects group consists in 24 healthy subjects and 18 patients. The group 
of patients (18 patients), was organized in accordance with the nature of the 
muscular diseases and named Pat.1 through Pat. 18 and distributed as follows: 
Steinert (Pat. 1, 2, 13, 14, 15, and 16; are concerned); Belt dystrophies (Pat. 3, 4, 
6, 7, 8, 10, 11, 12, 17, 18; are concerned); Charcot-Marie-Tooth (Pat.5; only one 
patient is concerned). 
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Figure 3: Average frequency in Hz versus Average force in Newton, (a) in 
the case of healthy subjects, (b) in the case of patients. 
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     Figure 3 gives the statistical variation of the average frequency versus average 
force in both groups that made the comparison easier. This feature characterizes 
the evolving of the MMG signal amplitude in the period of stability of the 
muscular contraction. The linear regression estimated yields a positive slope. It 
can be observed that in the case of healthy subjects few values are dispersed 
whereas in the case of patients, we observed dispersed values with a greater 
standard deviation. In both cases, the average frequency varies linearly with the 
force. In order to check on this tendency we have chosen to study the mean 
frequency of the MMG signal versus average force. Figure 4, gives the results of 
this second spectrum feature and its assessment. So, we noticed in the case of 
healthy subjects that the mean frequency takes smaller values and a greater 
standard deviation when the regression is still linear with a positive slope 
inferring to a linear function of the average force. In the case of patients, the 
mean, the mean frequency seems to behave similarly. Globally the values of the 
mean frequency are goodly correlated with a higher regression coefficient. 
Figure 5 illustrates the MMG rms value in terms of maximum force for either 
healthy subjects or patients. The only relevancy is the poor and dispersed values 
in the case of patients and the quadratic form of this feature. This compelled us 
to test and estimate another interesting feature from the MMG acquired and 
which in fact best characterizes the activity of fast muscle fibers. This parameter 
is called the HF% ratio. Figure 6 gives the variations of this important feature in 
terms of maximum force. Examining figure 6, we observed that this ratio varies 
from 5 % to 35 %. In the case of patients, affected with different muscular 
diseases it appears that in maximum this ratio goes under 30 % and its minimum 
is around 5 %. In this case we did not notice significant differences with healthy 
subjects except that for special diseases like Steinert and Charcot-Marie-Tooth 
the values of HF % are smaller than in the case of healthy subjects. 
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Figure 4: Mean frequency vs. av. force, (a) healthy subjects, (b) patients. 
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Figure 5: MMG rms value vs max. force,  (a) healthy subjects,  (b) patients. 
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Figure 6: HF % ratio vs. max. force, (a) healthy subjects, (b) patients. 

5 Conclusion 

The first aim of this work was to show the readability of the reassigned Wavelet 
scalogram of the MMG signals acquired from the flexors forearm muscles of 
many healthy subjects and patients affected with some well-known muscular 
diseases. The most relevant fact is the improvement of the readability of the 
reassigned wavelet scalograms and hence, a better concentration of the most 
significant frequencies is obtained in both cases. The contours plot emphasizes 
these observations and the estimated Power spectral densities confirmed the 
frequency range of the MMG signals. Moreover, tremors were read on the 
reassigned wavelet scalograms and especially in the case of patients. We found 
that these tremors were revealed by concentration of frequencies in the vicinity 
of 7 Hz and were due to awful adaptation with the grasping of the gauge. Also as 
it had been observed for patients that power spectra were shifted to the lower 
frequencies during fatigue. Moreover, reassigned scalograms showed a better 
localization in time of the frequency contents. The second part of this work dealt 
with the statistical assessment of some spectra features that can best characterize 
the muscle dynamic properties such as average frequency, mean frequency, 
average value and rms value of the MMG signal, and finally the important HF % 
ratio. The average and rms value of the MMG amplitude are known as features 
which represent the evolution of the MMG amplitude for whatever healthy or 
patient subject. The analysis of these parameters clearly illustrated that the 
frequency and amplitude of MMG signals are in linear relationship with force for 
both cases of subjects. We also found that the disparity of values of the rms 
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MMG and its average are in the same order whereas for the average frequency it 
is smaller than the mean frequency for both groups. In addition these two 
parameters are in linear relationship with force whereas those previously cited 
are in quadratic relationship with force. Then, we had implemented the HF % 
ratio which can serve as good tool to assess the contribution of fast fibers as a 
peculiar indicator for affected muscles. 
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