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Abstract

Idiopathic intracranial hypertension (IIH) is a syndrome of unknown cause char-
acterized by elevated intracranial pressure (ICP). By representing an abnormally
collapsible sinus with a downstream Starling-like resistor, our previous modeling
efforts have produced explanations for various phenomenon associated with IIH.
Recent reports indicate that many patients with chronic daily headaches have been
found to actually be suffering from IIH without papilledema (IIWOP). Moreover,
these patients often demonstrate hypertensive B-waves and plateau-like waves
upon continuous ICP monitoring. Our previous results did not produce such patho-
logical wave-forms. The current model, described here, resolves this deficit by rep-
resenting a semi-collapsible sinus by a refined resistor based on experimental data.
With this revision the model exhibits low frequency, high amplitude ICP waves
in milder cases of sinus collapsibility. As collapsibility increases further, so does
the duration of the waves until they are replaced by two stable states, one of nor-
mal pressures and one of elevated pressures. In this domain the model behaves
in much the same way as our previous work. Thus, the current model reproduces
the results of previous versions and additionally exhibits the high amplitude spikes
and wave-forms seen clinically in milder cases of IIH.
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1 Introduction

Idiopathic intracranial hypertension (IIH), is a syndrome of unknown cause char-
acterized by elevated intracranial pressure (ICP). It presents with symptoms of
headache, nausea, vomiting, papilledema, and visual obscurations. A stenosis or
tapering of the transverse sinuses has been observed in many patients suffering
from IIH [1]. The role played by this stenosis in the etiology of IIH has been a
matter of some dispute.

There are also indications that IIH, in a subclinical form without papilledema
(IIHWOP), may be more common than previously realized. A study by Bono et
al. [2] revealed that 6.7% of 724 migraine patients had bilateral transverse sinus
stenosis and 67.8% of these were diagnosed with IIHWOP. A study by Torbey et
al. [3] also suggests that many patients with chronic daily headache (CDH) may
actually be suffering from IIHWOP. Furthermore, of the ten patients examined in
the Torbey study, all ten exhibited hypertensive B-waves and nine of the ten exhib-
ited plateau or ’near-plateau’ waves during continuous CSF pressure monitoring.

Recently, we reported [4, 5] the results of modeling studies that suggest the
observed sinus stenosis and persistent hypertension of IIH may be a physiological
manifestation of a stable steady-state of elevated pressures predicted by the studies
to exist when the transverse sinus is sufficiently collapsible. These results provide
explanations for the following phenomenon associated with IIH: 1) the observed
sinus stenosis, 2) intermittent occurrence of symptoms, 3) large pressure gradients
observed across the transverse sinus, 4) the long-term relief that has been observed
following lumbar puncture, and 5) the possible persistence of sinus stenosis after
the hypertension has been resolved via pharmaceutical treatment and weight loss.
These simulations do not, however, predict the prevalence of hypertensive ICP
spikes (B-waves) or plateaus observed by Torbey in IIHWOP patients.

The lumped-parameter model presented here is a refinement of the model devel-
oped by Stevens et al. [5]. This previous modeling effort introduced a ’down-
stream’ Starling-like resistor at the location of the transverse sinus. The principal
difference between the current model and the previous model is that the descrip-
tion of the down-stream resistor has been modified to more closely reflect the data
provided by Heil [6]. This resistor is placed at the location of the transverse sinuses
in the model where the stenosis has been observed clinically.

2 The model

The lumped-parameter model utilized in this study is depicted in Figure 1. Here,
the intracranial region is divided into four compartments. Compartment C consists
of the intracranial arteries and capillaries. This vasculature leads into the veins and
saggital sinus which are represented by compartment S. Blood then drains through
the transverse sinuses and into the jugular veins in compartment V . Brain tissue
and cerebrospinal fluid (CSF) are lumped together to form compartment F .
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Figure 1: A diagram of the lumped-parameter model. Compartment labels are indi-
cated in parentheses. Qij represents fluid flow from compartment i to
compartment j as determined by equation (1). Arrows indicate the cus-
tomary direction of flow. The normal, base-value, pressure of each com-
partment is given in square brackets. Compliance terms Cij represent a
deformable membrane between compartments i and j across which vol-
ume changes may be accommodated through equation (3). The pressures
and flows depicted here are from Stevens et al. (2006) [5].

2.1 Model assumptions

The following basic assumptions lead to the fully time-dependent differential equa-
tions that govern the pressure dynamics of this system:

Assumption 1: All fluids are considered isothermal and incompressible.
Assumption 2: Cerebral blood flow (QCS) and CSF production (QCF ) will

be considered constant except in simulations of cerebral blood flow perturbations
where QCS is allowed to vary with time as a forcing term.

Assumption 3: All other flows (QFS, QFV , and QSV ) are related to pressure
differences by the hydrodynamic version of Ohm’s law;
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Qij =
Pi − Pj

Rij
=

Pij

Rij
, (1)

where Qij is the flow from compartment i to compartment j, Pi and Pj are the
spatially-averaged pressures of compartments i and j, respectively, Pij = Pi−Pj ,
and Rij is the lumped resistance.

Assumption 4: A partially-collapsible transverse sinus is represented by a down-
stream Starling-like resistor between compartments S and V. Similar resistors have
been used previously to help explain various aspects of IIH [4, 5]. As in these
previous works, the resistance term will be a decreasing function of the down-
stream transmural pressure. However, unlike previous versions, the representation
here is linearly dependent on downstream transmural pressure and involves both
a maximum and minimum resistance value. Specifically, this resistance function
is defined by

RSV =




p RSV if PFV < Pmin
FV

[
1 + m(PFV − PFV )

]
RSV if Pmin

FV ≤ PFV ≤ Pmax
FV

q RSV if PFV > Pmax
FV

. (2)

where

Pmin
FV = PFV − 1 − p

m
and Pmax

FV = PFV +
q − 1
m

.

Here, PFV and RSV represent the normal values of the pressure difference PFV

and the resistance RSV , respectively. The form of this resistor is based on the
relationship between downstream transmural pressure and the pressure drop for
constant fluid flow through a collapsible tube reported by Heil [6]. A graph of the
present form of this resistor is depicted in Figure 2.

There are three relevant parameters in the present Starling-like resistance term.
First, m describes the initial collapsibility of the vessel. Second, p defines the mini-
mal resistance, p RSV (0 < p < 1), when the vessel is in its maximally open state.
Third, q defines the maximal resistance, q RSV (q ≥ 1), when the vessel is in its
maximally collapsed state. This maximum is imposed to accommodate alternative
drainage routes and/or a geometry that may prevent complete collapse [8]. If the
sinus is fully rigid, the parameters in (2) take the values p = q = 1 and m = 0. In
this case, the resistance is constant at RSV .

Assumption 5: The deformation of the membrane between adjacent compart-
ments is a function of the change in the pressure difference between these com-
partments. That is,

dVij

dt
= Cij

d

dt
[Pi − Pj ] = Cij Ṗij , (3)

 © 2007 WIT PressWIT Transactions on Biomedicine and Health, Vol 12,
 www.witpress.com, ISSN 1743-3525 (on-line) 

194  Modelling in Medicine and Biology VII



−25 −20 −15 −10 −5 0
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Downstream transmural pressure: P
V

- P
F

(mmHg)

R
es

is
ta

nc
e

R
SV

(m
m

H
g)

/(
m

l/m
in

)

Figure 2: A graph of the resistance term RSV defined by equation (2) with m =
.4, p = 0.7, and q = 7. The large dot indicates the base-value state
(PV F , RSV ).

where Vij denotes the volume of the cup formed at the interface of compartments
i and j, and Ṗij represents the time derivative of the pressure difference Pij . Here,
Cij denotes the local compliance between the two compartments [9].

2.2 Governing equations

The model’s governing differential equations are obtained by imposing conserva-
tion of mass in each compartment. As the fluid is considered incompressible, this
requirement is equivalent to a conservation of volume. Imposing this constraint in
compartments F and S results in the following equations

QCF − QFS − QFV =
dVF

dt
, (4)

QCS + QFS − QSV =
dVS

dt
. (5)

Here, the right hand sides denote the change in volume with respect to time. Apply-
ing Assumptions 2, 3, and 5, the model’s governing equations now become

QCF − PFS

RFS
− PFV

RFV
= CFS ṖFS + CFV ṖFV + CCF ṖFC + CFY ṖFY (6)

QCS +
PFS

RFS
− PSV

RSV
= CFS ṖSF . (7)

For the sake of restricting the scope of our analysis to the relationship between PF

and PS , the pressures PY , PC , and PV will all be held constant at their prescribed
base-values.
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2.3 The steady-state equations

The first step in a steady-state analysis of the current model is to set the time deriva-
tive terms in the governing equations (6) and (7) to zero. The resulting system of
algebraic equations for the steady-state now becomes

f(PF , PS) = QCF − PFS

RFS
− PFV

RFV
= 0 (8)

g(PF , PS) = QCS +
PFS

RFS
− PSV

RSV
= 0. (9)

respectively.
In the parameter identification process, the resistance terms are calculated in

such a way that the base-value pressures PF = PF and PS = PS will satisfy the
steady-state equations.

2.4 Stability analysis

The fully time dependent system of differential equations (6) and (7) can be put
into matrix form as(

CFS + CFY + CCF + CFV −CFS

−CFS CFS

) (
ṖF

ṖS

)
=

(
f(PF , PS)
g(PF , PS)

)
.

(10)
Here, the functions f and g are defined in the steady-state equations (8) and (9).
The stability properties of steady-state solutions can now be determined from the
eigenvalues of the Jacobian matrix for the above system.

3 Results

The steady-state results presented here are based on explicitly solving equations (8)
and (9) for all steady-state solution pairs (PF , PS), and time dependent simulations
were performed by numerically integrating equation (10).

3.1 Steady-state solutions and stability

Figure 3 depicts the bifurcation diagram for the system (10) in terms of the CSF
pressure PF . As seen here, the value of m determines the stability of the base-value
state (PF , PS) and whether there are additional steady-states present. In terms of
the steady-state solution PF there is a unique stable steady state PF = PF for
m < m2. Consequently, for values of m less than m2, there is only the base-
value state, and it is globally stable. A Hopf bifurcation occurs at m2 resulting in
a stable limit cycle of pressures. The pulse pressure (max - min) of these cycles
increases quickly with m to a limiting value of PH − PL. At mL a saddle-node
bifurcation occurs producing a stable hypotensive state. Soon after, at mH , a stable
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Figure 3: A bifurcation diagram of the steady-state solution PF with respect to the
rigidity parameter m for p = 0.7 and q = 7. When m < m2, the horizon-
tal line at PF = PF represents the unique, globally-stable, base-value
state. A Hopf bifurcation occurs at m2 resulting in a stable limit cycle of
ICP’s. The pulse pressure of these cycles increases quickly to the limit-
ing value of PH − PL ≈ PH − PF . At mL a saddle-node bifurcation
occurs producing a stable hypotensive state. Soon after, at mH , a nontra-
ditional bifurcation occurs and a stable hypertensive state is introduced.
The level of the hypotensive state (PL) and the stable hypertensive state
(PH ) are determined by the rigidity parameters p and q respectively.

hypertensive state is introduced. For m > mH the stable hypotensive and hyper-
tensive states persist. At this stage the current model reflects the same behavior
that is described by Stevens et al. [5]. As such, the focus of this investigation and
time-dependent simulations will be in the parameter domain where self-excited
oscillations are present (m2 < m < mL).

3.2 Low frequency self-excited waves - limit cycles

When the rigidity parameter m falls between m2 and mL there are no stable
steady-state solutions but rather stable limit cycles of relatively low frequency
pressure oscillations. Figure 4 depicts several examples of these self-excited oscil-
lations. These pulsations progress from high-frequency spike-like waves when m
first crosses m2 (panels A and B), to less frequent plateau-like waves of increasing
period (panels C and D).

3.3 Cerebral blood flow disturbances

When the rigidity parameter m falls between m2 and mL the system is very sen-
sitive to pressure and flow disturbances that may naturally occur during normal
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Panel A: m � 0.445
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Panel B: m � 0.45
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Panel C: m � 0.46
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Panel D: m � 0.47

Figure 4: This sequence of simulations demonstrates that as m increases from
0.445 (upper left) to 0.47 (lower right) the self-excited wave frequency
diminishes and the plateau period increases. The first graph demonstrates
waves that are similar to clinically observed hypertensive B-waves and
the later graphs are similar in wave-length and amplitude to clinically
observed A-waves. In all four cases, the rigidity parameters p and q were
given numerical values of 0.7, and 7 respectively.

physiology. This is simulated by introducing a cerebral blood flow (CBF) ’spike’
into the model via the flow term QCS. The duration of this spike is 6 seconds and
it’s magnitude is 10% of the normal level of CBF.

In simulations of normal physiology, where the sinuses are rigid and m = 0,
the CBF spike described above produces approximately a 0.2 mmHg spike in ICP,
a response that would go unnoticed physiologically and clinically. Conversely, in
simulations of pathophysiology where the sinus is semi-collapsible with m2 <
m < mL, this small CBF disturbance can cause a much more drastic ICP spike
or a premature transition to a plateau wave. These responses are depicted in Fig-
ure 5 with m = 0.45. The low frequency plateau waves are caused by the semi-
collapsible sinus (see panel B in Figure 4). When a mild CBF spike occurs shortly
after a completed wave, a single hypertensive ICP spike results. When this same
stimulus occurs closer to the beginning of the next plateau wave, it causes a plateau
wave to occur sooner than it otherwise would. Therefore, when m2 < m < mL,
it is quite likely that hypertensive B-waves and plateau-like waves that could be
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Figure 5: A six second 10% increase in cerebral blood flow (QCS) initiates a
hypertensive B-wave (left) when introduced shortly after a plateau wave
and initiates an early plateau wave (right) when introduced later in the
cycle. Here, p = 0.7, q = 7, and m = 0.445 as in panel A of figure 4.

missed during a single lumbar pressure measurement would be observed during
long term ICP monitoring.

3.4 Two stable states: hypotensive and hypertensive

The saddle-node bifurcation that occurs at mL initially introduces two hypoten-
sive states, and the unstable state quickly transitions to a stable hypertensive state.
Here, small transient perturbations can cause permanent transitions between the
two states. It should be noted that the magnitude of the hypertensive state is deter-
mined by the parameter q and the hypotensive state is determined by the parameter
p. Additionally, the hypotensive state is close enough to normal pressure that it
would not be clinically recognized as hypotensive. In this parameter domain, the
current model reflects the same behavior depicted by our previous model [5] and
as such will not be elaborated upon further here.

4 Conclusions

The present refinement in the way a compressible transverse sinus is represented
in a mathematical model of lumped-parameter type expands our previous ability
to explain many of the various phenomenon associated with IIH. These included
sinus stenosis, intermittent occurrence of symptoms, large pressure gradients across
the transverse sinuses, and long-term relief after a single CSF withdrawal. In addi-
tion, the current model provides new insight into the existence of low-frequency,
high-amplitude ICP waveforms observed in chronic daily headache patients diag-
nosed with IIHWOP.
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