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Abstract 

Due to the sub-millimetre dimensions and accessibility of the distal regions of 
the lung, respiratory flows in the pulmonary acinus are often difficult to assess. 
However, a realistic description of acinar flows is needed to understand aerosol 
transport and deposition for medical applications such as aerosol inhalation. In 
an effort to develop more realistic computational fluid dynamics (CFD) models 
of the pulmonary acinus, we have simulated convective flows under rhythmic 
breathing motion in a space-filling model of an acinar branching tree. Our model 
captures well the variety of 3D flow patterns present along the tree and confirms 
the existence of complex recirculating alveolar flows. Our results emphasize the 
role of the alveolar to ductal flow ratio in characterizing acinar flows. 
Lagrangian particle trajectories suggest that massless particles, not influenced by 
sedimentation or diffusion, stay principally confined within acinar ducts without 
entering into alveoli. The inherent modularity of the present model is well suited 
to create more complete geometries of acinar trees and investigate the influence 
of convective acinar flows on realistic sedimenting and/or diffusing particles.  
Keywords:  lung, respiration, pulmonary acinus, convective flows, CFD, 
Lagrangian particle tracking, aerosols, low-Reynolds number flows. 

1 Introduction 

The pulmonary acinus is characterized by the complex of alveoli arranged as a 
foam-like sleeve on the surface of peripheral airways [1]. Alveoli guarantee gas 
exchange with blood capillaries and are encountered past the terminal 
bronchioles distal to the trachea. While the first 14 proximal airway generations 
are conductive pipes distributing airflow, respiration is driven by pressure 
gradients between alveoli and the outside environment. These gradients are 
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induced by lung parenchyma motion, which approximately satisfies geometric 
similarity [2]. Applying mass conservation results in a gradual deceleration of 
the airflow along the bronchial tree, such that acinar flows are effectively 
characterized by low Reynolds numbers (typically Re<1). However, such flows 
remain usually difficult to assess due to the sub-millimeter dimensions and the 
accessibility of the region. 
     Until present, insight into acinar flows has been brought by some 
experimental flow visualization studies [3, 4] and CFD models have made use of 
simple alveolated duct structures to investigate acinar flows [5–8]. In particular, 
low Reynolds alveolar flows can be extremely complex due to the unique 
alveolated duct structures and their time dependent motion. While convective 
acinar flows may not affect diffusive gas (oxygen) transport [9], alveolar flow 
patterns are, however, of significant relevance for aerosol kinematics and 
deposition of inhaled particles [10, 11].  
     Although there exists a history for the representation of alveoli figured as 
little spheres or hemispheres, it has been long recognized that alveoli are rather 
densely-packed hollow polyhedra [12]. Hence, in an effort to develop more 
realistic CFD models of the pulmonary acinus, we have developed a three-
dimensional acinar space-filling geometry to study respiratory convective flows. 

2 Numerical modelling 

2.1 Space-filling geometry 

Our idealized model is based on the description of the acinar ventilatory unit by 
Fung [13], which assumes that all alveoli are equal and space-filling and 
ventilated as uniformly as possible. Of the existing geometries suggested for an 
alveolus, a suitable choice is the truncated octahedron (or 14-hedron). The main 
advantages of this alveolar geometry are that it is space-filling, enabling the 
assemblage of several polyhedra to form ducts without leaving any voids. It has 
the minimum surface area to volume ratio of all space-filling polyhedra, and the 
most common shapes for alveolar septa found in lung parenchyma are hexagons 
and rectangles [13]. 
     Figure 1 shows how such polyhedra can be assembled into a space-filling 
acinar ductal tree. The structure of the tree is a 3D version of the schematic 
acinar model constructed by Fung [13], which bears resemblance with the 
description of Hansen et al. [14]. The acinar branching tree (fig. 1) is asymmetric 
and models a sub-region of an entire pulmonary acinus. Following the space-
filling assumption, all alveoli are identical and generation 8 consists of only one 
alveolus. Following Fung [13], the characteristic alveolar dimension is chosen to 
be 0.14 mm. The entire geometry consists of 190 polyhedra for a total sub-acinar 
volume of ~0.2 mm3 at t=0 (~0.2% of the average volume of an entire acinus [1]. 

2.2 Numerical methods 

Following self-similarity [2], any geometrical length scales with the 1/3 power of 
the lung. Hence, our model is designed to breath in a sinusoidal manner, with a 
period T such that: 
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where L0 is the length scale at t=0, and f=1/T is the breathing frequency. The 
volume excursion is given by C=(Vmax-Vmin)/Vmin, where Vmin and Vmax are the 
minimum and maximum volumes of the geometry. The length scale expansion 
factor is ( ) 11 31 −+= Cβ . Breathing conditions model sedentary tidal 
breathing of an average adult with T = 3 s, C ≈ 16.7 %, and β  ≈ 5.3 %. 
     The equations of motion are governed by the unsteady, incompressible 
Navier-Stokes equations, expressed as: 
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Figure 1: Acinar tree with generation numbering. 

where u  is the fluid velocity vector field, p  is the fluid pressure, ρ  its density 
and µ  its dynamic viscosity. Laminar flow conditions are assumed [5] and 
external body forces are neglected. To obtain the time-dependent flow field, 
eqns. (2) and (3) are solved on a moving grid using a commercial finite-volume 
based program with fully implicit marching techniques (CFX-10, Ansys Inc.). 
Respiratory flows are generated by implementing the length scale displacement 
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function (eqn. (1)). The no-slip condition was invoked along all acinar walls. The 
boundary at the entrance of the acinar tree was defined as a surface of constant 
pressure, arbitrarily set to 1 bar. Hydrodynamic similarity was achieved by 
matching Reynolds, νUD=Re , and Womersley numbers, νfDWo =  
to physiologically relevant values.  
     An unstructured mesh was generated for the geometry using a hybrid mesh. 
Simulations were performed to ensure that flow solutions were grid independent 
and converged, by performing a mesh refinement study. For this, we increased 
the density of volume elements by approximately 30% above the value that was 
eventually used (~540’000 elements). To achieve sufficiently accurate results 
such that changes in the resulting entrance flow Re were within <5% upon 
further time step refinement, a time step of ∆t=T/200 was eventually 
implemented [15]. Lagrangian trajectories of fluid (or massless) particles, )(tx , 
were computed by integrating: 
 

),()( txu
dt

txd
= ,  0)0( xtx ==    (4) 

 
where 0x denotes an initial particle position. 

3 Results and discussion 

3.1 Alveolar flow patterns  

Under rhythmical breathing, alveolar flows may substantially differ according to 
location along the airway tree (fig. 2). In the more proximal generations (gen.     
3–5), flows are generally characterized by the existence of alveolar recirculation 
patterns. Flows in cavities recirculate slowly (compare alveolar and ductal 
velocities in fig. 3) and may exhibit the formation of open streamlines that spiral 
into singular points (fig. 2(a) and (b)). In contrast, in deeper generations (gen. 7, 
fig. 2(f)), or conversely past asymmetrical bifurcations leading to an airway end 
(gen. 4, fig. 2(e)), cavities are largely characterized by radial flows.  
     In proximal acinar generations, only a small portion of the fluid enters 
individual alveoli, while the bulk of the ductal flow is carried towards deeper 
generations to feed more distal alveoli. In turn, the relatively strong ductal flows 
in the proximal generations create a shear layer over the alveolar mouth 
openings. These in turn generate flow separation and ultimately a recirculation 
region within the cavities. Nevertheless, within each alveolus, the fluid near the 
walls travels along the walls and approaches the wall surface in the direction of 
wall motion due to breathing motion (fig. 3). Hence, alveolar flow patterns are 
determined by the interplay between shear flow over alveolar mouths, leading to 
recirculation, and radial streamlines induced by wall motion, as noted previously  
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[6–8, 15]. As one travels towards regions where the strength of the ductal flow 
decreases, recirculation regions disappear and fluid fills alveolar cavities in a 
radial fashion (fig. 2(f)). 

3.2 Ratio of alveolar to ductal flow rate 

Values of the alveolar to ductal flow ratio, a dQ Q , capture well alveolar flow 
topologies (fig. 4). In particular, recirculation flows were abundantly present in 
proximal generations of the tree characterized by low values of a dQ Q , which 
underlines that the ductal flow generates sufficient shear along the acinar mouths 
to create flow separation. Past a threshold value, 0.02a dQ Q ≈ , dQ  is too 

weak to induce recirculation. Our findings for a dQ Q  are in good agreement 
with previous results for isolated alveolar cavities [6, 7, 15]. Note that from the 
definition of our space-filling model, a dQ Q=  at generation 8, since the 
alveolus and duct are undistinguishable.  
 

 

Figure 2: 3D ductal streamlines. Insets (a)-(f): examples of local alveolar 
flow fields.  
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Figure 3: Cross-sectional velocity field during expiration (t=0.8·T) in 
generation 3.  

     Alveoli are by definition all identical. Hence, one might expect that alveolar 
flows be identical within a duct. However, looking at recirculating flow patterns 
(fig. 3) reveals in fact that neighboring alveolar flows differ slightly from one 
another. This specificity may arise from the fact that locally, each alveolus is 
oriented differently with respect to the streamwise ductal flow direction. In turn, 
the shear flow passing over an opening as well the fluid deflected into a cavity 
may be slightly affected by the alveolar orientation. Differences in flow patterns 
may also arise due to local changes in a dQ Q . While aQ  is constant for any 

alveolus, dQ  decreases progressively with depth. Therefore, local changes in 

a dQ Q  may account for such flow pattern differences. 

3.3 “Massless” particle trajectories 

Lagrangian particle tracks were examined to characterize the role of convective 
flows for aerosol transport. Particles were injected uniformly over the acinar inlet 
cross-section at a constant rate starting at t=0 (fig. 5). Resulting trajectories are 
strongly confined within alveolar ducts. Particles scarcely enter into alveolar 
cavities but rather, they follow the bulk of the ductal flow deep into the acinus. 
Within the end of an inspiration (t=T/2), particles have reached their most distal 
destination, effectively spreading along all branches. While particles follow 
streamlines, however, they cannot cross them (in contrast with sedimentation or 
diffusion mechanisms) and thus do not enter alveolar cavities. In the distal 
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regions where a dQ Q  (fig. 4) becomes relatively large as well as past 
asymmetrical airways leading to an airway end, convective velocities become so 
slow such that particles do not reach alveolar walls by the end of an inspiration. 
Hence, these particles stay within ducts and come short of entering alveolar 
cavities before the exhalation cycle begins and trajectories are reversed. 
 

 

Figure 4: Ratio of alveolar to ductal flow rate. 

 

 

Figure 5: Massless particle trajectories at inspiration end (t=T/2). 
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     Results for massless particle trajectories seem to suggest that to reach bulk 
deposition of particles within alveolar cavities, additional transport mechanisms 
such as sedimentation or diffusion, depending on particle size, may play a 
considerable influence. Indeed, it has been previously shown that, depending on 
the size of aerosol particles (submicron or >1 µm), it is rather the coupling of 
convection with either Brownian diffusion [10], or sedimentation under gravity 
[11], which leads to particle deposition at alveolar walls. 

4 Conclusions 

We simulated convective flows under rhythmic breathing motion in a space-
filling acinar tree model. Results capture well the existence of recirculating 
alveolar flows, similar to previous two- and three-dimensional studies [6–8, 15]. 
Our results confirm again the importance of the alveolar to ductal flow ratio to 
characterize acinar flows. Lagrangian particle tracks suggest that particles 
starting at the model inlet are largely confined within acinar ducts. This result 
may suggest that while convection is an important mechanism for particle 
transport and mixing [16], it may not guarantee alone bulk particle deposition 
inside local alveolar cavities. By using the model’s inherent modularity, we may 
modify the current geometry to construct new assemblages of more complete 
acinar networks. Such geometries may be used to investigate scenarios of 
collateral ventilation as well as pursue simulations of sedimenting and diffusing 
particles to examine the influence of acinar flows on realistic particle inhalation. 
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