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Abstract 

A multibody dynamics approach of the humerus-shoulder complex (HSC), 
driven by a musculoskeletal system has been developed in this paper, and the 
continuum mechanics modeling of skeletal-muscles with the evolutional 
constitutive law of Hatze has been created at the same time.  The constitutive 
equations are formulated using the link coordinates at first, and then transformed 
to the common global coordinate system.  Based on the updated Lagrangian 
approach, the human multibody dynamics for a multiple bone-joints system 
driven by muscle activations has been formulated using the kinetic and potential 
energies stored in the respective muscles and bone-joint system.  Since the 
governing equations of motion and the dynamic equilibrium equation includes 
statically indeterminate problems such as the multimuscles constraint for joint 
torques, they have been formulated, and solved, using Lagrangian multiplyer 
approaches, under prescribed constraint and applied load conditions.  Finally, an 
actual application to the assistive technology of a stand-up motion, aided by the 
humerus-shoulder complex for lifting one’s own upper body, has been analysed 
and compared with those of experiment, and the applicability of the method 
developed has been clarified. 
Keywords:  humerous-shoulder complex, multimuscle activations and 
constraints, multibody dynamics, updated Lagrangian approach, Lagrangian 
multiplyer’s approach, muscle’s statically indeterminate problems, application 
to assistive technology. 
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1 Introduction 

Many research works aiming to clarify the dynamics of HSC system have been 
done extensively.  Poppen and Walker [3], Dvir and Berme [4], and Engin and 
Peindl [5] studied the rigid link model of the shoulder complex by two or three 
dimensional models, and attempted to reveal the motion mechanisms of the 
shoulder complex in elevated motion of the upper arm.  Meanwhile, van der 
Helm and Veenbaas [6] revealed the mechanical effect of muscles with large 
attachment sites for the modeling of the shoulder mechanism.  In addition, Kalra 
et al [7] and Maurel [8] and Maurel and Thalmann [9] proposed the topological 
modeling based on medical data.  They predicted the inner planes of the muscle 
forces by using the proposed shoulder complex models. 
     On the other hand, experimental studies have been reported by Maekawa et al 
[10] who measured the movements of the HSC system, using 3-D coordinates, 
and revealed the relationships between humerus and scapula movements in 
elevation, adduction, and abduction of the HSC system.  Kizuka et al [11] 
measured the relative activation relationship of the surface and inner layers of 
muscles. 
     In most cases of the HSC system so far stated, the multibody dynamics 
modeling of the HSC system has been performed by using the inverse dynamics 
approaches.  However, the assistive technology for the recoveries of diseased 
people require more rational approaches on the bone-muscle system of limb-
trunk motions of the HSC system, since the activation levels measured at the 
skin surface usually differ from those of interior muscles because there exists 
many muscle activations at the interior of the shoulder complex. 
     This paper presents a more rational approach on the multi-body dynamics of 
the HSC system driven by the muscloskeletal system.  The continuum mechanics 
of muscles with the evolutional constitutive law of Hatze [1, 2] has been 
developed at first in order to solve the multi-muscle system stored in the 
shoulder complex.  The Lagrange Multiplier approaches are applied to solve the 
statically indeterminate problems with the multimuscles constraint giving rise to 
joint torques.  Finally, an actual application to solve a stand up motion, aided by 
the HSC system for lifting one’s own upper body, has been analysed and 
compared with those of experiment.  The applicability of the method developed 
has been clarified including rational approaches on multi-muscle activation 
levels. 

2 Schematical model of humerus-shoulder complex 

Fig. 1 (a) [12] shows a schematical view of the humerus-shoulder complex, 
which consists of 3 rigid links (a clavicle, a scapula, and a humerus) with 3 
rotational joints (a sternoclavicular joint, an acromioclavicular joint, and a 
shoulder joint) and the scapula contacts and slide along the thorax along the 
scapular-thoracic joint. 
     Fig. 1 (b) shows the driving muscles where they generate relative movements 
and / or constraint between mainly the Scapula-Thorax, humerus-scapula and 
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humerus-Thorax and so on.  The role of these muscles are shared by some parts, 
i.e. the muscles driving the scapula motion sliding on the thoracocis surface, 
muscles driving the humerus motion, and the muscles interlocking the relative 
motion between the humerus and scapula along the front and back surfaces, and 
that along the depth between the thorax and the scapula.  Each muscle system 
constructs the antagonism system and generates various movements; i.e., 
elevation, reduction, abduction, adduction, and rotation of the humerus-scapula 
system. 
     In this case, referring to Fig. 1 (b), the elevating motion of the scapula 
consists of Trapezius (upper fibers (12)), Levator scaplae (5) and Rhomboids (6), 
and the reducting motion is given by the Subclavius, Pectoralis Minor (10) and 
Trapezius (lower fibers (12)).  In the same way, the abducting motion of the 
Humerus is given by the Deltoid (middle fibers (13)), Supraspinatus (1), Long 
head of the biceps (16), and Long head of the triceps (14)), and adducting motion 
is given by the Pectoralis Major (3), Coracobrachialis (4), Subscapulalis (2), 
Latissimus dorsi (7), Teres Major (9), and Short head of the biceps (15), 
respectively. 
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Figure 1: Schematical views of the HSC system. 

3 Assistive motion modeling aided by the shoulder complex 

Fig. 2 (a) shows a typical stand up motion of a candidate from the sitting posture 
during an assistive training. 
     The motions of the shoulder complex are shared by three steps as shown in 
Fig. 2 (b) i.e. adduction, abduction and elevation respectively. 
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     Below we limited the present approaches to be the abduction / adduction 
motion for simplicity.  Fig. 2 (c) shows the interactive forces acting on the 
humerous and shoulder complex, due to the driving muscle forces stated above. 
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Figure 2: Assistive motion and their interactive forces of the HSC. 

4 Simplified modeling of the HSC 

For simplicity, we assume that (1) the Humerus-shoulder complex consists of 3 
rigid links (a clavicle, a scapula, a humerus), (2) the clavicle and scapula are 
assumed to be one rigid link because the relative motion between them is to be 
small during abduct and adduct motions.  (3) the scapula motion is assumed to be 
done in 2D space (metopic plane), (4) the clavicle and scapula inertias are to be 
small because the clavicle moves quasi-statically during the scapula motion at 
the acromioclavicular joint.  (5) the scapula motion at the scapular-thoracic joint 
is assumed to be performed by the agonists, and the viscosity between the 
scapula and thorax are assumed to be ignored (not to have synovial propeties). 
     Then, the driving muscles of the shoulder complex are shared by the 
following five groups of muscle strips MSij (i: link number, j: muscle strip 
number), as shown in Fig. 3 (b).  These muscle strips consists of the following 
five groups specified by the muscle’s origin and inserted positions: 
 • MS11: Trapezius (lower fibers), Pectoralis Minor, Subclavius 
   (Thorax    clavicle-scapula muscle group), 
 • MS12: Trapezius (upper fibers), Levator scapulae, Rhomboid 
  (Thorax    clavicle-scapula muscle group), 
 • MS21: Teres Major, Coracobrachialis, Subscapulalis 
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  (Clavicle-scapula    humerus muscle group), 
 • MS22: Deltoid (middle fibers), supraspinatus 
   (Clavicle-scapula    humerus muscle group), 
 • MS23: Latissimus dorsi, Teres Major, 
 (Thorax    humerus muscle group), 
where the PCSA (Physiological Cross-Sectional Area) of each muscle strip is 
assumed to be the sum of the grouped muscles’ cross-sectional areas, and the 
tenioid muscles are replaced by sets of the radial line segment grouped by 
considering the innervation and the error of the origin/insertion position [13].  
The difference of dominance between the surface and interior surface muscles 
are assumed to be ignored because its differences are minute. 

(a)  Skeletal-joints system (vertical and horizontal planes)

(b)  Muscloskeletal system (vertical and horizontal planes)
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Figure 3: Computer models of the HSC coupled system. 

5 Constitutive model of skeletal muscle 

The uni-axial active stress under contraction along the muscle fibers Saf is 
expressed as follows, [2, 14] based on the evolutional model of Hazte [1] as 
shown in Fig. 4 (a), 

                        (1) 

where 0
maxS  represents maximum isometric stress and B(β), F(εf) and P( fε ) are 

activation rate, force-deformation, and force-velocity relations, respectively.  The 
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parameters β, εf, and fε  represent the neuro stimulation, Green strain, and strain 
rate. 
     It can be generalized as 

                        (2) 
with the following equations as 

 

where F(εxx) represents the normalized function of force-deformation relations, 
Do(β, εxx) the parameter for the transformation to the global coordinate.  The 
relationship between stress and strain on the global coordinate is given by 
multiplying F(εxx) by Do(β, εxx).  The parameters abk, bbk (k = 1, 2), am, bm, ci (i = 
1, 2, 3), Go, and µi (i = 1, 2) are the material factors and εxx means the strain from 
the initial length.  In this paper, B(β) is replaced approximately by β for 
simplicity. 
     In addition, Daf expresses a function of neuro stimulation β defining the 
muscle force under isotropic condition, and ε and φ (=ε - ε 0) are independent 
parameters.  The neuro stimulation β must be provided to satisfy the strain 
required to generate movements ε and the muscle contraction force σ = Dafφ, 
which counteract with the external force, to satisfying the dynamic equilibrium 
condition. 
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Figure 4: The stimulation and contraction-deformation characteristics of a 
muscle. 

     Using the above equations, we can obtain the incremental form of constitutive 
equation for skeletal muscle as below.  Since the active type constitutive 
equation shown in Eq. (2) is the function of β, εxx, εo, and xxε , the incremental 
form of constitutive equation on n-th step can be expressed as follows 
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 (3) 

6 Musculoskeletal modeling of the HSC system 

Fig. 3 (a) shows a computer model of the HSC system with 2 rigid links and 2 
rotational joints, surrounded by several driving muscles groups.  The 1st link 
consists of clavicle and scapula and the 2nd link defines the Humerus.  Fig. 3 (a) 
shows the coordinate systems of r1, r2, and r3, representing the partial 
coordinates of the thorax, those of the 1st and 2nd links, R being the global 
coordinate respectively.  The position vectors among partial coordinates are 
expressed by ir , iq , iξ  and so on, in vertical and horizontal planes.  Then, the 
positional vector at the center of gravity of i-th link { 1+ir }R and the velocity 
vector at center of gravity, {υi+1} can be written in the following forms 

 (4) 

 

where 
                          (5) 

where [S]i, i-1 means the coordinates transformation matrix between i and i-1 
members. 
     The translational velocity increments at the center of gravities of the 1st and 
2nd links can be expressed as follows: 

 (6) 

 

Thus, the partial angular velocity iq , the increment of partial angular velocity 
iq∆ , the global angular velocity ωi, can be obtained in the same way as above. 

     In the next place, the length vectors of each muscle strip of MSij, rkO
ijMS }{  

and rkI
ijMS }{  shown in Fig. 3 (b) can be derived using the above equations. 

     That is, the origin of position vector, {MSO}R, positional vector RIMS }{ 1  and 
position vector to the 2nd link RIMS }{ 2  of muscle strip MSij can be expressed 
by 
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                        (7) 

 

from which we have 

 

Then we can get the strain, strain increment and strain rate increment as 

,                       (8) 

and 

                            (9) 

7 Muscloskeletal system modeling based on updated 
Lagrangian approach 

Multi-body dynamics of the HSC system consists of various nonlinearities such 
as angular motion of each link, the transformation matrix and their derivatives of 
link coordinates, the contraction dynamics of skeletal muscles due to the neuro 
stimulations and so on. 
     So we have to formulate such problems, based on the Updated Lagrangian 
approaches by defining numerous energies in every incremental step of motion 
and loading.  The Updated Lagrangian Approach for solving the above problems 
can be expressed by 

  (10) 

where ∆L = ∆T - ∆U, and ∆T is the incremental kinetic energies of the whole 
system, by assembling those energy ∆Ti of i-th link being expressed by 
translational and rotational components as, 

  (11) 

in the above [Mi] and [Ii] are mass and inertia matrices. 
     In the same way the incremental potential energy of the whole system and the 
i-th muscle strip ∆Umij, of the muscle MSij, the incremental potential energy of 
the whole system ∆U can be expressed by 

                 (12) 

where afij
xxS∆  is the incremental active stress in a muscle, and oxx

ij
xx ε∆−ε∆=φ∆  

means the constraint strain of muscle contraction, Loij and PCSAij being the 
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natural length of muscle and the physiological cross-sectional area, respectively.  
Note that the component of passive stress is neglected for simplicity.  Then 
Eq. (10) can be rewritten for the k-th link as follows 

  (13) 

and the left hand terms of Eq. (13) can be further expanded as follows, by 
neglecting the second order term, that is 

  (14) 

8 Dynamic equations of motion for whole system 

The dynamic equations of motion for the whole system can be expressed as 

  (15) 

where [A1] and [A2] are the terms of muscle stiffness and viscosity, and 2nd and 
3rd terms of the right side are the muscle force for motion generation, muscle 
inner force for dynamic torque balance at respective joints, respectively.  It has 
been postulated that the incremental joint torques generated in the 1st term of the 
right side in Eq. (15) should be balanced with the incremental muscle torques of 
the 3rd term.  That is, the dynamic equilibrium equation at each joint is 
expressed by 

                               (16) 
where Eq. (16) includes a statically indeterminate problem in case where there 
are many muscle strips acting on a joint.  If Eqs. (16) satisfy, then Eqs. (15) can 
be rewritten by 

  (17) 

9 Dynamic equilibrium equation using the Lagrange 
multipliers approach 

In parallel with motion analysis given by Eq. (17), we consider the yielding 
conditions of the incremental muscle contraction forces based on Eq. (16).  The 
equilibrium equation between external and internal forces in the model with 2 
rigid links and 5 muscles shown in Fig. 3 (a) can be expressed as follows, 
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F11 + F12 - F21 - F22 + R1 - R2 + G1 = 0,  
F21 + F22 - F23 + R2 + G1 + Fex= 0, 
T11(F11) + T12(F12) - T’21(F21) - T’22(F22) + TR2(R2) + TG1(G1) = 0, 
T21(F21) + T22(F22) + T23(F23) + TG2(G2) + Tex(Gex)  = 0  (18) 

where Fij, Ri, Gi, and Fex represent the muscle force, the joint reaction force, 
gravity force, and external force vector respectively, T(X) being the moment due 
to the force X about the origin of each partial coordinate.  In addition to the 
above, Xi (i = 1, 2, ~, 5) are the generated forces of muscle strip {Xi}T = {F11, 
F12, F21, F22, F23} and Xi (i = 6, 7, ~, 9) being the reaction force acting on each 
joint. 
     Since the governing equilibrium equations, obtained from Eqs. (18) generally 
include much more numbers of unknowns than those of equilibrium equations at 
each joints, since they include a lot of unknown forces of muscle strips as shown 
in Fig. 3. 
     In order to solve the problem, we apply the Lagrangian multiplier’s approach 
as shown below.  Let us introduce a Lagrangian function as 

                                          (19) 
where f (X) is given by 

                                  (20) 

and λi the Lagrangian multipliers, hi being the constraint conditions given in  
Eqs. (18), Ci the weight parameters which indicate the rating of muscle force to 
these problems, respectively. 
     Then the Lagrangian function given in Eq (19) must satisfy the extremity’s 
conditions with respect to the joint forces Xi and Lagrange parameter λi as 
follows. 

  (21) 

     Once we can get the minimum conditions of muscle forces to satisfy  
Eq. (19), by solving Eq. (21), then we can get the muscle activation levels 
directly using the rational approach stated above as follows. 

  (22) 

where ijaf
ij

af
ij DD β=β− /)( .  At the same time, the torques generated by joint 

reaction, gravity and external forces can be computed on every step of posture 
during movements. 
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10 Analysis and experiments on stand-up motion assisted by 
the HSC system 

The movement of the HSC system during lifting one’s upper trunk, using both 
elbows, as shown in Fig. 3 (a) and Fig. 5 is analysed and the results are 
compared with those obtained by experiments. 
     A volunteer aged 23 weighing 60 kgf was examined to measure the humerus 
postures of the shoulder angles with 90, 70, and 50 [deg.] during 2 seconds, 
under with or without loading conditions of 10kgf, respectively. 
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Figure 5: Experiments on stand-up motion and EMG measurements. 
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Figure 6: Computed activation levels of MS11. 

     A video camera was used to measure the posture during the movements, and 
EMG data of every muscles such as MS11, MS12, MS21, MS22, MS23 were 
recorded as, shown in Fig. 5 (a) 
     Fig.6 shows an example of the computed activation levels β of muscle strip, 
MS11, during angle changes in every step of the HSC motions, with or without 
additional load conditions of 10kgf.  It is seen that the muscle activation level 
increases with both the joint angle and the amount of load level, respectively. 
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     Fig. 7 (a) shows the difference in the calculated activation levels of the 
agonist muscle MS11 (Trapezius lower fibers) and antagoist muscle MS12 
(Trapezius upper fibers) during the angle change at i-th joint in the posture from 
(a-1) (θ1 = 112 (deg.), θ2 = 65), to (a-3) (θ1 = 86, θ2 = 33), respectively.  It is 
seen that the activation level of the muscle MS11 is more greatly increased than 
that of MS12, and the agonist M. (muscle) gives rise to main force generator, 
counteracting to given loads. 
     Fig. 7 (b) ~ (d) show the comparison between the measured and calculated 
results levels of MS21 and MS23, during the increase of humerous adductive 
motions.  The computed activation levels of each muscle satisfactorily agree well 
with those of the experimental, except that the activation levels of MS23 during 
the lower angular motion, which seem to include the shearing effect were 
omitted for simplicity. 
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Figure 7: Comparison of EMG between calculated and measured. 

 
     In the next, an experiment on the adduct motions of a volunteer’s elbows, 
using the belt-pulley system as shown in Fig. 5 (c) have been done, accompanied 
with lifting additional force 10kgf in each belt load at the same time, whereas the 
adductive motion take places one second from the respective horizontal planes.  
The computer analysis has been done at the same time with the sampling time of 
10-5
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     Fig. 8 (a) (b) and (c) shows the comparison between calculated and measured 
results with respect to the joint angular motion (Fig. (a)), joint angles (Fig. (b)) 
and angular velocities (Fig. (c)) during the time history of motions.  It is seen 
that the computed results during motion trajectories agree well with those of the 
experimental, and the relation between joint torques and angles satisfactorily be 
calculated without any measurements and without any inverse dynamic 
approaches. 
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Figure 8: Comparison of link motion, joint angles and angular velocities. 

11 Concluding remarks 

The following results are obtained. 
(1) The continuum mechanics modeling of multimuscle systems with 

evolutional constitutive law has been developed for solving the multi-
musculoskeletal system such as humerus-shoulder complex. 

(2) The humerus-clavicle-scapula-thorax system with three rigid links, driven 
by numerous multimuscle system has been formulated and applied to the 
humerus-shoulder complex for lifting one’s upper body.  It is made clear 
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that the present approach can successfully be applied to these kinds of 
problems. 

(3) The Updated Lagrange approach and the Lagrange Multiplier approach can 
successfully be applied to solve the statically indeterminate problems with 
multimuscles constraint, larger than the number of governing dynamic 
equilibrium equations at each joint, and on each loading step. 

(4) Once this kind of approach has been developed, it makes possible that one 
can calculate numerous kinds of activation levels of multi-muscle system 
rationally, without any measurements under inverse approaches. 
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