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Abstract

The prescription of boundary conditions is a critical issue in 3D blood flow sim-
ulations. To account for the whole cardiovascular system, we can impose data
measurements or couple the 3D model with reduced ones (see [4, 5, 9]). In either
cases only average (mean pressure or flow rate) data are normally available, which
must be properly fed to the Navier-Stokes solver. In this paper we propose an al-
gorithm to impose mean flow rate boundary conditions in a problem posed on a
compliant domain. It is an extension of the approach advocated in [3, 12]. Further-
more we consider the coupling between a 3D fluid-structure interaction model and
a lumped parameters (0D) one, representing the systemic tree. We extend the two
coupling techniques in [2, 11]. In the first approach the reduced model provides
the mean pressure to be imposed as defective boundary condition to the 3D model,
which conversely will make ready the flow rate to the reduced model. In the second
strategy the type of data to be exchanged is reversed.

1 Introduction

Blood flow simulations often require a detailed description of the flow in a specific
sub-region of the cardiovascular system (e.g. carotid bifurcation, stenosed ves-
sel, etc.). These detailed information is obtained by means of three-dimensional
(3D) fluid-structure interaction models based on the coupling of the incompress-
ible Navier-Stokes equations (when considering medium to large vessels) with a
structure model for the vessel wall. A particular vascular district of interest is con-
sidered, thus specific data on the artificial boundary sections (i.e. the part of the
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boundary not corresponding to the physical wall) have to be prescribed. Since the
human cardiovascular system is formed by a closed network of vessels with a high
level of interdependence, a realistic numerical simulation of the blood flow in a
local district may not be fully accomplished if the interactions with the systemic
haemodynamics are neglected. One possible solution is to resort to experimental
measurements. Another possibility is to couple the 3D fluid-structure interaction
model with reduced models of the cardiovascular system (see [4, 5, 9]). The lat-
ter leads to the geometrical multiscale modeling of the circulatory system, which
consists in approximating the different parts of the cardiovascular system with dif-
ferent levels of accuracy, leading to different levels of computational complexity.
The reduced models are derived from the 3D fluid-structure interaction model, by
making some assumptions and simplifications (see [4, 5]). Either measurements
and reduced models provide average data (mean pressure and flow rate). How-
ever, the 3D fluid-structure problem requires pointwise boundary conditions. So,
in order to have a well posed problem, the non-standard boundary conditions have
to be properly set.

For what concerns the mean pressure problem (i.e. the prescription of the mean
pressure on the artificial section), in this paper we apply to a compliant vessel the
approach proposed in [6], that suggests to impose on the artificial section some
natural (Neumann) conditions obtained from a suitable variational formulation.
For the flow rate problem, we present an extension to the compliant case of the
augmented formulation proposed in [3, 12].

Moreover, we extend the 3D-0D coupling proposed in [2, 9], by coupling a
lumped parameters model (0D) of the circulatory system with a 3D fluid-structure
interaction model of a compliant cylindrical vessel. The coupling is performed en-
forcing the continuity of the flow rate and of the mean pressure on the artificial
interface sections (denoted by Γj). Furthermore, an algebraic pressure-area rela-
tion is assumed on the 0D model, making possible for the 0D model to provide
information on the wall displacement.

We propose two different coupling strategies, to be used in the frame of an iter-
ative procedure. In the first approach the network provides a mean pressure value
as defective boundary condition on Γj , while the 3D model returns the flow rate
through Γj to the network. Alternatively, the reverse situation can be considered.
In this case the proposed approach to impose the flux is applied.

Section 1 is devoted to the 3D fluid-structure interaction coupling algorithm and
Section 2 to its extension to the flux problem. In section 3 we introduce the lumped
parameters model and we discuss its coupling with the 3D fluid-structure interac-
tion one. Finally, in section 4 we present some preliminary numerical results.

2 The fluid-structure interaction problem

To describe the behaviour of the blood in compliant domains, we couple the
Navier-Stokes equations, modelling the incompressible Newtonian fluids (like
blood in sufficiently large vessels), with a model for the structure. Regarding the

© 2005 WIT Press WIT Transactions on Biomedicine and Health, Vol 8,
 www.witpress.com, ISSN 1743-3525 (on-line) 

352  Modelling in Medicine and Biology VI



fluid problem, we can not use in this case an Eulerian approach, as usually done in
fluid mechanics (see, for example, [10]).

In fact, since no slip conditions are prescribed on the physical boundary Γw
t , we

would like to use Lagrangian coordinates near the wall. In this way the velocity
of the fluid and of the structure are equal on Γw

t . However, a fully Lagrangian
approach is not suitable, since far from the wall we would like the points of the
fluid domain not to move, so that the domain does not warp (see Figure 1, right).
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Figure 1: Reference (left), ALE (center) and Lagrangian (right) fluid domain.

In order to merge these requirements, let us introduce the Arbitrary Lagrangian
Eulerian (ALE) approach (see [7, 8]). The idea is based on moving the points of
the fluid domain in an arbitrary way, with the constraint that the points on Γw

t move
with the structure and the points on Γin

t and Γout
t do not move. This can be made,

for instance, by solving a Laplace equation (harmonic extension):




−�x = 0 in Ω0

x = g on Γw
0

xn = 0 on (Γin
0 ∪ Γout

0 )
∂xτ

∂n
= 0 on (Γin

0 ∪ Γout
0 ),

(1)

being x the position of the points (whose normal and tangential components are
xn and xτ , respectively) and g = x0 + η, with x0 the position at t = 0 and η
the structure displacement. Problem given by (1) allows to build the domain Ωt,
for all t > 0 (Figure 1, center) and, at the discrete level, it provides the fluid mesh.
Let us introduce the ALE mapping At : Ω0 → Ωt giving, for each point Y of
the reference domain Ω0, the position y at time t of the node that at t = 0 was in
Y , following not the trajectories of the fluid, but the arbitrary movement chosen
(given, for example, by (1)), i.e. At(Y ) = y(t, Y ). Similarly to the Lagrangian

case, the ALE time derivative of a scalar quantity f is given by DAf
DT = ∂f

∂t + w ·
∇f, where w(t, y) = ∂

∂ty(t, A−1
t (y)) is the velocity of the fluid mesh. It is now

possible to write the Navier-Stokes equations in Ωt:


DAu

Dt
− div ν(∇u +∇tu) + [(u−w) · ∇]u + ∇p = f in Ωt

div u = 0 in Ωt.
(2)
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Notice that for w � 0, i.e. far from the wall, we recover the Eulerian formulation,
while for w = u, i.e. on the wall, we get the Lagrangian formulation. Problem
given by (2) has to be completed with suitable initial and boundary conditions on
Γin

t and Γout
t .

For what concerns the structure, we consider the equations of linear elasticity:

∂2η

∂t2
− div(σs(η)) = h,

being σs the structure stress tensor and h a forcing term. To close the problem, we
impose the interface conditions:


 u(t, y) =

∂η(t, A−1
t (y))

∂t
on Γw

t

h(t, Y ) = σf (u(t, At(Y )), p(t, At(Y )))n on Γw
0 ,

where σf is the fluid stress tensor (see [8]). In other words, the structure prescribes
the velocity as Dirichlet boundary condition to the fluid and the latter gives the
stress on the interface as forcing term to the structure.

3 Flow rate boundary conditions

We would like to impose on Γin
t the following flux condition:

∫
Γin

t

u · ndσ = Q(t). (3)

Navier-Stokes equations need pointwise conditions to be well posed. However,
condition (3) gives only an average information on the surface. To fill this gap,
we extend the augmented formulation proposed in [3, 12] to the compliant case.
The main idea is to consider the flux condition as a constraint imposed through a
Lagrange multiplier λ, so that the variational ALE formulation reads




(DAu

Dt
, v

)
+ ν(∇u +∇tu, v) + (((u −w) · ∇)u, v)

−(div v, p) + λ

∫
Γin

t

v · ndσ = (f , v)

(div u, q) = 0∫
Γin

t
u · ndσ = Q(t),

(4)
for all v ∈ V and q ∈ Q, for suitable spaces V and Q and where (·, ·) is the inner
product in L2.
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For the numerical solution of the fluid-structure interaction problem with a flow
rate boundary condition (3), we merge the approaches proposed in [1, 12]. Let us
write the fluid and the structure problems in the following compact form:

{
uf

λ = (u, p, λ) = Fλ(us)
us = η = S(uf

λ),
or

{
uf = (u, p) = F(us)
us = η = S(uf ).

The first problem adopts (4) for the fluid solution while the second employs an
ALE Navier-Stokes with usual boundary conditions (in the sequel we refer to this
problem as classical). Both problems could be written as a fixed point equation on
us:

us = S(Fλ(us)), or us = S(F(us)), (5)

respectively. In [1] a Newton algorithm is proposed to solve the classical fluid-
structure interaction problem. Extending this approach to the first problem in (5),
we obtain the following algorithm:

For each time step
Do until convergence (nN iterations)
• (a) Given us, solve the fluid problem uf

λ = Fλ(us)
• (b) Solve the structure problem ûs = S(uf

λ)
• (c) Evaluate the residualR = (us − ûs)
• (d) Solve the tangent problem [DusR(us)] δus = −R(us),

i.e. do until convergence (nT iterations)
– (d1) Solve the fluid problem uf,k = F(δus,k)
– (d2) Solve the structure problem δûs,k = S(uf,k)

• (e) Update rule: us ←− us + δus

where Dus
s

(d) is carried out with an inner Newton algorithm, whose kth iteration consists on
solving a classical fluid-structure problem. To solve the problem at point (a) we
use the algorithm proposed in [12] (GMRes + Schur complement), whose com-
putational cost is equal to 2 classical Navier-Stokes problems. Hence, the com-
putational cost of the jth (external) Newton iteration is equal to 2 + nT classical
Navier-Stokes problems, against the 1 + nT required in the classical case.

Remark Suppose we have n + 1 artificial sections Γi, i = 0, . . . , n, where we
wish to impose the fluxes Fi. In the compliant case we have

∑n
i=0 Fi =

∫
Γw

u ·
ndσ. Thus, we can impose the fluxes on all Γi, contrary to the rigid case where,
since F0 = −∑n

i=i Fi, we can not impose the flux on Γ0.

4

In order to prescribe data on the artificial boundaries of the 3D fluid-structure
interaction problem, we couple it with a lumped parameters description of the
remaining part of the cardiovascular system.
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There are two kinds of reduced models that can be used to describe the human
circulatory system at a low computational cost: the 1D and the lumped parameters
(0D) ones. We will consider here the latter.

Starting from the 3D incompressible Navier-Stokes equations in a compliant
straight cylindrical vessel, under certain assumptions and integrating over the cross
sections, one can derive a 1D model, stated in terms of hyperbolic equations along
the axial coordinate of the vessel.

The lumped parameters models can be derived starting from the 1D model, by
integrating the equations in space, and are expressed in terms of a system of or-
dinary differential equations (ODE). They describe the variation in time of the
averaged pressure and flow rate in a specific terminal compartment of the circula-
tory system. Since they do not account for variations in space, they are often called
zero-dimensional (0D) models.

In general, a lumped parameters model describing the whole circulatory system
can be written as (see [5, 9])


dy
dt

= Ay + b + r , t > 0

y = y0 , t = 0
(6)

where y is the vector of the state variables, consisting of the mean pressure and
flow rate in specific compartments, A is the system matrix, b derives from the 3D
model boundary conditions, r(t) accounts for the heart action and y0 is the given
initial datum. The lumped parameters model can be regarded as electric networks.
Indeed, the flow rate can be seen as the electric current and the mean pressure as
the voltage.

We assume that system (6) describes the entire (or a part) circulatory system and
we substitute a part of that network with its correspondent 3D description. In an
iterative frame to the solution of the coupled problem, the 3D fluid-structure inter-
action model provides pointwise information on the velocity and pressure which
could be integrated to obtain the average data to be prescribed to the 0D model.
For each interface section Γj there are two choices:
• The 3D model provides the flow rate Qj to the network while the latter

computes the mean pressure Pj to be input to the 3D model. In this case we
have a mean pressure boundary condition for the Navier-Stokes equations
on the interface boundary. To this aim, the approach proposed in [6] can
be applied. Therein, we pose (−pn + ν(∇u)n) |Γj = −Pjn as boundary
condition for the Navier-Stokes problem on Γj . Regarding the 3D structure
problem, since the 0D does not provide a priori any information on the wall
displacement, we exploit an algebraic pressure-area relation valid for the
lumped parameters model ([4, 5]):

P = β

√
A−√A0

A0
with β =

√
πh0E

1− ξ2
, (7)

where A denotes the area and A0 the value of the artery area at rest; h0 is the
wall thickness at rest, E is the wall Young modulus and ξ the Poisson ratio.
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Thus, through relation (7), the 0D model supplies in this case also the area
A to the 3D model that is prescribed to the structure equation as a Dirichlet
condition, supposing that the interface section Γj is cylindrical and moves
only radially.
• The 3D model provides the mean pressure Pj to the network while the latter

gives the flow rate Qj to the 3D model. In this case the flux problem for the
Navier Stokes equations can be solved with the strategy of Section 2. Here
the lumped model does not provide any value for the area, since no relation
is available on the 0D model between flux and area, so on the structure an
homogeneous Neumann boundary condition is imposed.

The numerical treatment of the coupling between the lumped parameters model
and the 3D one is based on a splitting strategy (see [2, 9]): at each time step each
model provides the necessary data to the other one. The explicit forward Euler
method is sufficient to solve the ODE system corresponding to the network (see
[9]). This causes the computation of the coupled 0D and 3D discretized models to
be completely separated at each time step (see [2, 9]).

5 Numerical results

The first results we propose concern a simulation where the physiological flux
of Figure 2 is imposed in a cylindrical compliant vessel. The flux corresponds to
measurements and is imposed by means of the algorithm described in Section 2.
We have considered the stiffness of the vessel wall sufficiently rigid in order to
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Figure 2: Physiological flux.

compare the results with the rigid case. It is evident from Figure 3 that the differ-
ences are negligible. We refer to future works for comparisons in more realistic
cases. Since the experimental evidence showed that the number of inner Newton
iterations nT is such that 5 < nT < 9, we conclude that the computational costs
of the flow rate and classical problems are comparable for a cylindric compliant
domain (see Section 2).
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Figure 3: Axial velocity at the middle (left) and at the end (right) of the cycle.

Table 1: Comparative results for the 3D-0D coupling at the end of the cycle, using
the strategy of imposing the mean pressure on the 3D model.

Coupling 3D-0D Equivalent network relative error

∆P 0.6108 0.6074 0.0056

Qin 5.675× 10−3 6.484× 10−3 0.1248

Qout 5.726× 10−3 6.789× 10−3 0.1566

The second simulation concerns the coupling of a 3D compliant cylinder with
the simple network of Figure 4 ([2, 12]), which has a pressure source of type
U(t) = c + cos(2πt), capturing the periodic action of the heart.

C4 C3 C2 C1

L8 R8

R5 L5R6 L6

U(t) C 3C 4

R 6
L int 1

L int 2

Figure 4: Network for the mean pressure problem (left) and its modification for
the flux problem (right).

In Table 1 we present the results obtained for the coupling, comparing them
with the results obtained by substituting the 3D model with its equivalent lumped
parameters description. The results show that the mean pressure and the flow rate
are the almost the same at the interfaces, in particular we recover very good re-
sults for the pressure. Notice that for the flux strategy problem we have to allocate
inductances on the coupling interfaces (see [2, 11]).
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