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Abstract 

Driving ability can be impaired by fatigue, drowsiness, drugs and alcohol, all of 
which have been implicated in causing road traffic accidents. Acute 
hypoglycaemia, which is the most common side effect of insulin therapy in 
individuals with diabetes, may also compromise driving skills. Other than by 
forbidding people to drive, the potential danger can be reduced by monitoring 
health and consciousness of drivers, by providing them with feedback on their 
conditions using, eventually, an emergency centre or biofeedback. In this paper, 
we propose the use of a signal processing system based on neural networks for 
system modelling and prediction. In particular, using neural networks we will 
reproduce the glucose temporal evolution without invasive technique for drivers, 
with the aim of preventing loss of consciousness while driving and hence 
improving road safety. Some illustrative trials will be shown in this regard. This 
research work is supported by the “CTL Excellence Centre (Centro di Ricerca 
sul Trasporto e la Logistica)” co-funded by the Italian Ministry of University, 
Education and Research and by the University of Rome “La Sapienza”. 
Keywords:  modelling and prediction, diabetes, data acquisition and analysis, 
neural network, road safety. 

1 Introduction 

Driving is an activity that demands complex psychomotor skills, good 
visuospatial functions, rapid information processing, vigilance, and satisfactory 
judgment. Hypoglycaemia is a common side-effect of insulin therapy for 
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diabetes, which may be associated with significant morbidity and can interfere 
with everyday activities such as driving. Medical studies have demonstrated that 
cognitive functions which are critical to driving (such as visual information 
processing, attention, reaction times and hand-eye coordination) are impaired by 
some critical biological parameters such as hypoglycaemia, high body 
temperature or low skin conductance level. In fact, clinical studies have shown 
that driving performance is adversely affected by these biological alterations [2]. 
Hypoglycaemia is recognized to cause some crashes and consequently, careful 
avoidance of hypoglycaemia is recommended before and during driving. This is 
particularly relevant for drivers receiving intensive insulin therapy, who may 
experience hypoglycaemia more frequently. We propose in this paper a signal 
processing system based on neural networks by which we will reproduce the 
glucose temporal evolution without invasive technique for drivers. The aim is to 
prevent loss of consciousness while driving and hence to improve the road 
safety. The neural computing system is implemented on a board unit mounted on 
the vehicle; such a unit is capable of collecting, storing, elaborating and 
communicating data obtained in real-time from the vehicle and its components 
(i.e., driver, cargo, surrounding environment, etc.). 

2 Diabetes mellitus and driving performance 

Glucose is the most important physiological stimulation for insulin secretion. 
Insulin reply to a protracted glucose stimulation of the β-cells is split into two 
phases: a first, high, secretion, rapidly decreasing, and a second, delayed, 
secretion peak, during all the stimulation period. When glucose is no more able 
to stimulate the β-cells, in the human subject several dysfunctions appear, among 
which one of the most serious is the so-called “diabetes mellitus” (DM). It is 
characterized by hyperglycaemia, due to a complete absence of insulin or to a 
partial deficit, related to its reduced biological efficiency. DM can be classified 
into two forms [5]: 
 

a) DM type 1, insulin-dependent (IDMM); it is characterized by a quite 
complete absence of insulin secretion; it represents the 10-15 % of all the 
DM pathologies; 
 
b) DM type 2, insulin-independent (NIDMM); it is characterized by a low 
insulin secretion, associated to tissue refractoriness to insulin activity; it 
represents the 85-90 % of all the DM pathologies.  

 
     One acquired complication of insulin therapy, which increases in prevalence 
with duration of diabetes, is the impaired awareness of hypoglycaemia. Acute 
hypoglycaemia, the most common side effect of insulin therapy, may also 
compromise driving skills. Although its development does not invariably result 
in revocation of the driving license, it is considered to be a major risk for driving 
by most licensing authorities. Impaired awareness of hypoglycaemia is 
associated with more profound cognitive dysfunction, which takes longer to 
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recover after acute hypoglycaemia than is experienced by individuals with 
normal awareness. Studies during hypoglycaemia have demonstrated that 
cognitive function does not return to a normal state until 40–90 minutes after 
normoglycemia has been restored. Functions that are most affected by 
hypoglycaemia include rapid decision-making, sustained attention, analysis of 
complex visual stimuli, “mental flexibility,” memory of recently learned 
information, and hand–eye coordination. In addition, hypoglycaemia diminishes 
the speed of visual information processing, affects contrast sensitivity and 
promotes mood changes, including increased irritability and anger, which may 
be relevant to road safety. 

3 Prediction of glucose behaviour 

The performance of a predictor depends on how accurate it models the unknown 
context delivering the sequence to be predicted. Due to the actual importance of 
forecasting, the technical literature is plenty of methods for implementing a 
predictor, especially in the field of neural networks [6, 7]. All of them only 
partially match the context, also in the favorable case of signals not contaminated 
by the presence of spurious components; consequently, a prediction error 
inevitably arises. 
     Given a sampled sequence ( )ns , the general approach to its prediction at 
distance m , 0>m , consists in expressing the sample ( )mns +  in function of 
the previous samples ( )ks , nk< . The latter are usually grouped into a vector 
xn∈ℜN, where integer N represents in this case the number of samples in xn and 
it is also known as the order of the predictor. Based on this approach, two 
problems must be solved: the determination of the most suitable set xn of 
previous samples; the determination of the function ( )mns + = ( )n

m xf )( ,   
( )mf :ℜN→ℜ, relating future samples to the previous ones. Such a function is 

usually approximated by means of a synthetic model )(
~ )( xf m . Early methods 

proposed were based on the estimation of linear models. For example, the 
simplest prediction approach is the one concerning linear autoregressive (AR) 
models, where each input vector xn is constituted by N consecutive samples of 
( )ns  and the target output is the sample ( )mns +  to be predicted; i.e.: 
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     The coefficients ia , Ni ...1= , of the function )(

~ )( ⋅m
ARf  can be determined in 

this case by relying on global statistical properties of the sequence s(n) as, for 
example, its autocorrelation function. 
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     The way to determine the input vectors xn, based on past samples of s(n), is 
called embedding technique. Based on well-known techniques for time series 
analysis [8], a useful expression for the input vector is 

[ ]))1((...)2()()( TNnsTnsTnsnsxn −−−−= , where N and T are also 
referred to as embedding dimension and time lag, respectively. Although such 
parameters can be estimated by analyzing the time series, the resulting values for 
N  and T right not be feasible for glucose prediction while driving. According to 
clinical  experience and some preliminary trials, a suited choice, which we will 
use in the following, is 5=N and 1=T  using a twenty minutes sampling rate. 
Thus, on the basis of the previous approach, the basic problem to be solved in a 
prediction task is the approximation of an unknown function from the 
observation of a limited number of input-output pairs, i.e. the embedded vectors 

nx  and target outputs that must be predicted. Therefore, the approximation is 
achieved through a regression function, which is learnt  by using a training set of 
samples with the aim of maximizing its generalization capability. The latter, in 
this case, is the capability to  accurately predict a set of successive samples of the 
glucose sequence, which can be estimated over a test set of samples not used 
during training. The approximation problem is generally referred to as statistical 
regression or function estimation. Neural networks are also regression models, 
which are particularly suited in this regard. Usually, function estimation methods 
are based on a parametric basis function expansion, i.e.: 
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where the expansion coefficients aj and the basis function parameters θj, j=1…C, 
are determined during the learning procedure by using the training set. An 
important classification of function estimation methods based on neural networks 
is [9]: k-Nearest Neighbors (k-NN), Projection Pursuit Regression (PPR), 
Multivariate Adaptive Regression Splines (MARS), Multi-Layer Perceptron 
(MLP), Constrained Topological Mapping (CTM), Radial Basis Function (RBF) 
networks, Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Mixture of 
Gaussian (MoG) density model. 
     Among all the possible alternatives that can be used for this aim, a promising 
and well-known solution in the technical literature is represented by neural 
networks based on a MoG density models. In fact, the effectiveness of MoG 
neural networks in approximating real-world data sequences has been already 
established in [4, 10, 11]. 
     In order to train an MoG network we can adopt the SHEM (Splitting 
Hierarchical Expectation Maximization) algorithm [9]. It is based on the 
maximum likelihood approach for estimating the parameters of the whole 
Gaussian mixture, i.e. the jθ  parameters of each Gaussian Kernel jB . The most 
important benefit of SHEM is the automatic selection of the number C of 
Gaussian components. 
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4 Analysis of results 

In the following we show the results with a comparison between classical linear 
model (AR) and some different neural networks (MoG, RBF, ANFIS). As a 
comparison index, we will use the Signal to-Noise ratio (SNR) defined by 
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where ns~  represent the predicted value and ns  the actual value. We analyzed 
different cases using the predictors previously mentioned, by illustrating some 
different figures that represent the predicted glucose sequence in different cases. 
We have used a training set of 500 elements representing 10 different time series 
each composed by 50 samples. As test set we used 150 elements representing 10 
different time series each composed by 15 sequences. 

Table 1:  Comparison between Signal-to-Noise Ratio (SNR). 

Predictors SNR-Test 1 SNR-Test 2 SNR-Test3 
MoG 22.195 dB 33.456 dB 37.343 dB 
RBF 21.817 dB 29.95 dB 34.325 dB 
ANFIS 19.292 dB 25.727 dB 29.321 dB 
LINEAR 2.845 dB 3.8742 dB 5.4587 dB 
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Figure 1: Analysis of MoG predictor. 
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Figure 2: Analysis of RBF predictor. 
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Figure 3: Analysis of linear model. 
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     We show in fig. 1 the glucose temporal evolution predicted by MoG neural 
network, in fig. 2 the temporal glucose evolution predicted by RBF neural 
network and in fig. 3 the temporal glucose behaviour predicted by linear 
autoregressive model (AR). 

5 Conclusion 

In this paper, we have observed  that neural networks are suitable for modelling 
the temporal glucose behaviour, and more satisfactory than the linear 
autoregressive model. Consequently, from a safety and clinical point of view, 
this method may have some interesting implications, in order to single out 
possible pathological cases, without involving techniques which are invasive for 
drivers, with the aim to prevent loss of consciousness while driving and hence to 
improve the road safety. At present time, we are evaluating the performances of 
training and testing on real board units mounted on some prototype vehicles. 
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