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Abstract 

Surface electromyogram (EMG) is a bio-electrical signal detected non-invasively 
(over the skin) and reflecting features of the bio-electrical sources associated to 
muscle contraction. Surface EMG signal modelling has important applications in 
the interpretation of experimental EMG data, for a deeper understanding of the 
physiological mechanisms of muscle contraction. This study addresses the issue 
of introducing a general analytical method to study multi layer volume 
conductors (i.e., to solve a Poisson problem on domains constituted by multiple 
layered sub-domains, with different electrical conductivities). The method 
provides the solution to a multi plane layer problem, once the solutions of the 
homogeneous Dirichlet and Neumann problems in a one layer volume conductor 
are available. The same method can be applied to cylindrical layer volume 
conductors (some indications are given). It is applied to add a fat layer over a bi-
pinnate muscle layer (i.e., a muscle which has two groups of fibres with two 
orientations) which was analytically studied in the literature (considering only 
the muscle layer). The study provides an implementation of the results in a 
complete surface EMG generation model (including finite length fibres), and 
shows representative results of the application of the model proposed.  
     Poisson equation models different physical and biological situations. Thus, 
the method introduced can find applications in other fields of interest for the 
applied sciences. 
Keywords:  Poisson equation, multi layer volume conductor, Fourier transform, 
surface electromyogram. 
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1 Introduction 

The contraction of a muscle fibre is primed by the intra-cellular action potential 
(IAP), which is generated at the end plate, and propagates along the fibre toward 
the tendons, where it extinguishes. The IAP is a bio-electric source which 
determines a potential in the surrounding physiological tissues, endowed with 
electrical conductive properties. The non invasive detection of such a potential 
(on the skin) is called surface electromyography and the detected signal is the 
surface electromyogram (sEMG). The simulation of sEMG is important for a 
deeper understanding of the physiological mechanisms of muscle contraction 
(Kleine et al. [13]), through the estimation of physiological variables (inverse 
problem) (van Oosterom [25]). Furthermore, it can help in the choice of the 
detection system (Dimitrov et al. [3]; Farina et al. [7]), in the interpretation of 
experimental results (Dimitrova and Dimitrov [4]; Roeleveld et al. [22]), and for 
didactic purposes (Merletti et al. [16, 17]; Stegeman et al. [24]). A sEMG model 
is built by the following steps: 1) description of the source (i.e., generation, 
propagation, and extinction of the IAP); 2) mathematical description of the 
volume conductor; 3) modelisation of the detection system (spatial arrangement, 
shape and size of the electrodes) (for points 1), 2), 3) see Farina [9] and the 
bibliography therein); 4) description of the spatial and temporal recruitment 
strategy of the motor units (MUs), which are the basic functional blocks of the 
neuromuscular system (Fuglevand et al. [10]). 
     The volume conductor can be studied either analytically or numerically 
(Lowery et al. [14]; Schneider et al. [23]; Farina et al. [9]; Mesin et al. [21]). 
Analytical solutions can be obtained only in specific cases, while numerical 
methods are necessary when considering more complex conditions. 
Nevertheless, analytical solutions are valuable, as they allow one to determine 
the theoretical dependence of the solution on specific parameters of the system, 
to check the accuracy of numerical methods, and to reduce the computational 
time. Some examples of volume conductors, for which analytical generation 
models of sEMG are available, are the following: isotropic, homogeneous, 
infinite medium (Clark and Plonsey [2]); multi layer models for planar (Farina 
and Merletti [5]) and cylindrical (Gootzen et al. [11]; Block et al. [1]; Farina et 
al. [8]) volume conductors; volume conductors with local (Mesin and 
Farina [19]) and with distributed (Mesin and Farina [20]) in-homogeneity; bi-
pinnate muscle (Mesin and Farina [18]); muscle with fibres inclined with respect 
to the detection surface (Mesin and Farina [18]). 
     In this work, I present a general method to add a layer (or more layers, by 
iteration) to a volume conductor for which a solution is known. The method is 
checked by comparison with the known solution for the case of homogeneous, 
plane, multi layer tissues (Farina et al. [5]). It is then applied to a non 
homogeneous single layer model of a bi-pinnate muscle, providing the analytical 
solution for a new model of multi layer bi-pinnate muscle. A general discussion 
on further possible fields of application is finally provided. 
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2 Methods 
An analytical method for studying multi layer volume conductors is introduced. 
The method is first tested on a model for which an analytical solution (obtained 
by a different method) is known, and then is applied to study a new volume 
conductor model, i.e. a multi layer model of a bi-pinnate muscle. 

2.1 Mathematical problem for a volume conductor 

Electrical field problems in physiology can be considered (within a good 
approximation) as quasi-static, Heringa et al. [12]. Thus, the physiological tissue 
can be described as a volume conductor. In these conditions, the electrical 
potential satisfies Poisson equation:  

I=∇⋅∇− )( ϕσ                           (1) 

where ϕ  is the potential (V ), I  the current density source (A/m3), and σ  the 
conductivity tensor (S/m).  
     A mathematical problem is obtained by adding boundary conditions to eqn 
(1). Usually a physiological volume conductor is considered insulated (i.e., the 
conductivity of the surrounding medium, e.g. air, is neglected), which means that 
a homogeneous Neumann problem is written. If more layers (with different 
conductivity) are studied, interface conditions of continuity of the potential and 
of its flux (i.e., the current density vector in the direction normal to the interface 
surface) are considered. 

2.2 General method for multi layer volume conductors 

The proposed method allows to add a plane layer over a volume conductor for 
which the solution of the homogeneous Neumann problem and the normal 
derivative of the solution of the homogeneous Dirichlet problem are available (it 
is enough to know such solutions at the interface surface). It is worth noticing 
that for a one plane layer model, both homogeneous Neumann and Dirichlet 
solutions can be obtained from the solution for the infinite medium, by image 
theorem. This means that knowing the solution for the problem in the infinite 
medium is sufficient to solve a multi layer problem. 
     Let us consider the solution of the homogeneous Neumann problem Nϕ  and  

of the homogeneous Dirichlet problem Dϕ  in an arbitrary semi-infinite medium 
(infinite in the x, z direction, and defined on y<0), which will be considered as 
the muscle layer 
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where δ  indicates the Dirac delta function and zzyyxx LT ˆˆ)ˆˆˆˆ( σσσ ++=  (an-

isotropic conductivity tensor), where Tσ  is the conductivity in the transversal 
direction with respect to the direction of propagation ẑ , and Lσ  is the 
longitudinal conductivity. Vanishing condition at −∞→y  is further imposed.  
     The method is based on the following ansatz for the solution of a general 
boundary value problem 

),,(),(),,(),( zyxzxbzyxzxa DN ϕϕϕ ∗+∗=                  (3) 

which means that the solution can be expressed in terms of Nϕ  and Dϕ , by a 

linear convolutive mixture with kernels ),( zxa  and ),( zxb , still to be 
determined. Substituting eqn (3) in eqn (2), the equation is satisfied with the 
following condition for the kernels  

)()(),(),( zxzxbzxa δδ=+                                     (4) 
The particular expression for the kernels can be obtained by further imposing the 
boundary conditions. In this work, the general expression (3) is used to fit 
interface conditions between two media.  
     For the application to sEMG simulation, I consider the case of a semi-infinite 
muscle layer (just studied) and a homogeneous layer defined on 0<y<d, placed 
over the muscle layer (which could model a skin, subcutaneous, or fat layer; in 
the following, I will refer to such a layer as the fat layer). The equation to be 
solved in the fat layer is Laplace equation. It can be solved in the Fourier 
domain, transforming from the x, z to the kx, kz variables 

Sy
S k
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d

ϕ
ϕ ˆ
ˆ 2
2

2

=                                                   (5) 

where k k ky x z= +2 2 , and ),;(ˆˆ zxSS kkyϕϕ = , where the spatial 
frequencies are considered as parameters of the set of ordinary differential 
equations (ODE) in eqn (5). Solving eqn (5) the following general solution is 
obtained 

dyeCCe ykyk
S

yy <<+= − 0ˆ 1ϕ                          (6) 
Imposing Neumann homogeneous condition at y=d yields the following 
expression 

dyeeC ykdkyk
S

yyy <<+= −− 0)(ˆ 2ϕ                              (7) 
which has a degree of freedom expressed by the constant C, which depends on 
the spatial frequencies kx, kz. Such a degree of freedom can be used to fit the 
interface conditions with the muscle layer. By imposing continuity of the 
potential and of its flux at y=0 and eqn (4) in the transformed domain, the 
following system of 3 equations in 3 unknowns (A, B, C, where A and B are the 
Fourier transforms of a and b, respectively) is obtained 
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The following expressions for the unknowns A, B, C are obtained 
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To determine the surface potential (for an insulated two layer model) only the 
expression for C is needed. 
 

 
Figure 1: Non-homogeneous (layered), an-isotropic volume conductor model 

constituted by muscle (an-isotropic) and fat (isotropic) layers. The 
volume conductor is infinite in x and z directions and semi-infinite in 
y direction (infinite in the negative direction, bounded at y=d). The z 
direction is that of the muscle fibres (along which the action 
potentials propagate). 

     Once the potential at the surface of the fat layer is obtained, it is possible, if 
needed, to iterate the method for adding another layer. To do that, also the 
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solution of the homogeneous Dirichlet problem is needed (eqn (2)). Considering 
eqn (6) and imposing homogeneous Dirichlet condition at y=d, the following 
general solution in the fat layer is obtained 

dyeeC ykdkyk
S

yyy <<+−= −− 0)(ˆ 2ϕ                              (10) 
Solving system (8) for this new expression of the solution in the fat layer yields 
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     In summary: the expression reported in eqn (7) substituting C from (9.III) 
solves the homogeneous Neumann problem in the fat layer; the expression 
reported in eqn (10) substituting C from (11.III) solves the homogeneous 
Dirichlet problem. These two solutions can be considered as the Fourier 
transforms of Nϕ  and Dϕ  (respectively) in eqn (2) for a two layer model. Thus, 
the analysis can be applied iteratively, adding as many layers as needed. 
     The extension of the method to a cylindrical geometry is lengthy, but 
straightforward. The general solutions in eqns (7) and (10) should be replaced by 
those equivalent for a cylindrical layer (in terms of a series of modified Bessel 
functions, see Farina et al. [8]). System (8) can then be solved in the cylindrical 
co-ordinates system, giving expressions equivalent to those reported in eqns (9) 
and (11). 
     Another extension of the method can be obtained. Suppose the impulse 
responses correspondent to homogeneous Neumann and Dirichlet conditions at 
the interface surface are known for two media. Let us indicate by 1 and 2 such 
two media, adding apex or pedex 1 or 2 to the expressions reported in (2) and (3) 
to indicate the corresponding solutions and kernels. Suppose we want to solve 
the two layer problem, with the impulse located in medium 2. Laplace equation 
is thus considered in medium 1. The condition corresponding to (4) for the 
general medium 1, satisfying Laplace equation, is the following 
 

0),(),( 11 =+ zxbzxa                                        (4’) 
 

Working again in the Fourier transformed domain (transforming the x and z 
variables into kx, kz), the following system of 4 equations in 4 unknowns (A1, B1, 
A2, B2) is obtained by imposing conditions (4) and (4’), and the interface 
conditions  
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     The solution of system (12) is the following 
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The solution reported in (13) allows to interface (with a plane contact surface) 
general media for which homogeneous Neumann and Dirichlet problems can be 
solved.  

2.2.1 Example of application to a plane homogeneous layer model  
In this section, the simplest multi layer volume conductor is considered. It is a 
two plane layer model, obtained by putting into contact two homogeneous 
media, and an-isotropic muscle layer and an isotropic fat layer, Farina et al. [5], 
see Figure 1. The solution for the configuration described in Figure 1 is known 
and may therefore provide a golden standard for testing the method introduced in 
the previous section. 
     By transforming the x, z variables into kx, kz, the following equations are 
obtained in the fat and muscle layers, respectively 
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where Fϕ̂ and Mϕ̂  are the Fourier transforms of the solutions in the fat and 

muscle layers, respectively, and k k ky x z= +2 2 , k k R kya x a z= +2 2 , 
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=  the an-isotropy ratio. The solution is obtained by separating 

the muscle in two domains, y<y0 and y>y0 (Farina [8]), writing the following 
solutions of the homogeneous equations 
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and imposing the following boundary and interface conditions 
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where the discontinuity of the flux imposed by the impulse source was 
considered in eqn (16.V). System (16) consists in 5 equations in the 5 unknowns 
A1, A2, B2, C, C1. By solving the system, the following expression for the solution 
in the fat layer is obtained 
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     Let us apply now the proposed method. First, I need the solution of the 
homogeneous Neumann and Dirichlet problems (2) in the semi-infinite muscle 
layer. The solution in the infinite muscle layer can be obtained by considering 
the homogeneous solutions in y<y0 and y>y0  
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and imposing the following interface conditions at y=y0 
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The following impulse response in the infinite muscle is obtained in the domain 
y>y0 
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It is possible to write system (8) by identifying the following quantities 
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where the image theorem was applied to the infinite muscle solution. With these 
identifications, the term C in (9.III) can be substituted in the general 
homogeneous Neumann solution (7) which gives the solution in the fat layer. 
The same expression reported in eqn (17) is obtained, verifying the identity of 
the solutions obtained with the two different approaches. 
     Also the general method reported in eqn (12) and (13) gives the same result. 
In such a case, two solutions correspondent to two impulse responses (relative to 
homogeneous Neumann and Dirichlet conditions imposed at y=0), one in the 
muscle and the other in the fat layer, are first obtained. Condition (4’) allows one 
to place arbitrarily the impulse in the fat layer, without any trace of such an 
arbitrary location point in the final solution. 

2.2.2 Application to a non homogeneous model: the bi-pinnate muscle  
The problem of a plane insulated bi-pinnate muscle was studied in Mesin and 
Farina [18]. The solution was obtained in the Fourier two dimensional (x, z 
directions) transformed domain for a set of planes along the y variable (see 
Figure 2).  
     Transforming from the y to the ky variable, the solution (for the infinite 
muscle) is obtained as a function of the spatial frequencies kx, ky, kz. Anti-
transforming the ky variable at y=0, the (Fourier transformed) surface potential at 
y=0 is obtained as a function of kx, kz. The normal derivative at the surface y=0 
can be evaluated by inverting at y=0 the transformed solution (expressed as a 
function of the spatial frequencies kx, ky, kz,) multiplied by jky. Multiplying by 2 
the solution and its normal derivative at y=0, the solution of the homogeneous 
Neumann problem 

0
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=yNϕ  (already reported in Mesin [18]) and the normal 

derivative of the solution of the homogeneous Dirichlet problem 
0

ˆ

=∂
∂

y

D

y
ϕ

 are 

obtained (by image theorem). These represent all the information needed for the 
method presented in Section 2.2 to solve a 2 layer problem. It is then possible to 
add a fat layer above the non homogeneous bi-pinnate muscle layer. The 
potential in the fat layer (with insulated condition at y=d) is given by eqn (7) 
substituting the term C from (9.III). 
     The impulse responses for a one layer (muscle) and a two layer (muscle and 
fat) volume conductor are shown in Figure 3. The filtering effect of the 
homogeneous fat layer determines a reduction in amplitude and a more diffused 
surface potential, as expected.  
     The surface single fibre action potential (SFAP) can be obtained by 
simulating the generation, propagation, and extinction of tripole sources (McGill 
and Huynh [15], Merletti et al. [16]). In Figure 4 some representative examples 
of SFAPs, detected by 8 monopolar channels, are shown. The SFAPs relative to 
4 fibres at 2 mm and 4 fibres at 5 mm depth within the muscle were simulated. 
The representative simulations show the decay of amplitude and the increased 
diffusion of the propagating component of the SFAPs increasing depth, and 
considering a two layer instead of an only muscle model. Non propagating 
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components, related to the extinction of the tripole source at the tendons, are less 
affected by the anatomy, and have approximately constant amplitude on different 
channels. Transversal displacements of the fibre in the left and right directions 
with respect to the detection system (Fibre 1 and 3, respectively) is not only 
related to a decay of amplitude and to an increased diffusion of the propagating 
component. Indeed, we can note that the SFAPs related to Fibre 1 and 3 are very 
different, as the positions of the innervation zone and of the tendons with respect 
to the detection system change completely. This is an important difference 
between muscles with pinnate and with straight fibres. Indeed, in the case of 
muscle constituted by straight fibres the orthogonal projections of the positions 
of the end plate and of the tendons on the line through the detection channels is 
(ideally) constant considering different fibres moving transversely with respect 
to the detection array. This is not the case for pinnate muscles. Moreover, in a bi-
pinnate muscle, when a detection array is placed over one bundle of fibres, there 
is a cross talk from the other bundle (Fibre 4 in Figure 4). Such signals change 
shape and amplitude between channels. 
 
 

 

Figure 2: Non-homogeneous an-isotropic model of bi-pinnate muscle. The 
reported data are those used for the representative simulations 
reported in the text. The anatomical parameters chosen describe a 
rectus femuris muscle. The sources are modelled by current tripoles 
(impulse amplitudes: I1 = 24.6 A/m2, I2 = -35.4 A/m2, I3 = 10.8 A/m2; 
distances between poles: a = 2.1 mm, b = 4.8 mm, McGill and 
Huynh [15], Merletti [16]). 

     All the shape perturbations of the propagating potentials and the changes in 
direction of propagation can affect the estimation of conduction velocity (CV, 
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physiological values between 3 and 5 m/s), which is one of the most important 
parameter to be extracted from sEMG signals, giving indications on muscle 
constitution and fatigue (see Farina and Merletti [6] for a recent review on CV 
estimation methods).  
 
 

 
 

Figure 3: Impulse responses associated to impulses at 2 mm a), b) and 5 mm c), 
d) depth within the muscle, at 10 mm distance from the pinnation 
plane in the x direction. A one layer (only muscle) model was used 
for a) and c), with 1.0=Tσ S/m, 5.0=Lσ S/m; a two layer model 
was considered for b) and d), placing over the muscle a plane fat 
layer, 1 mm thick, with 05.0=σ S/m. Impulse responses are shown 
in arbitrary units (A.U.). Discretisation of the variables kx, ky, kz was 
256 points. Maximum spatial frequency for kx, kz corresponds to a 
temporal frequency of 4096 Hz for a conduction velocity of 4 m/s 
(see Farina [8]). Maximum spatial frequency for ky corresponds to a 
discretisation of 0.1 mm in depth (the choice of 256 discretisation 
points makes negligible the aliasing for the maximal considered depth 
of 5 mm within the muscle).  
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Figure 4: Monopolar single fibre action potentials relative to 4 fibres at 2 mm 
and 4 fibres at 5 mm depth within the muscle (the same names [fibre 
1, 2, 3, 4] are given to both the 4 fibres on the planes y=-2mm and 
y=-5 mm). Both a section of the muscle a) and a representation of a 
section along the depth direction b) are shown. The electrode array is 
above and parallel to fibre 2. Fibre 1 and 3 are parallel to fibre 2 and 
displaced from it of 12 mm in the z direction. Fibre 4 is on the 
opposite side of the pinnation line. 

3 Discussion and conclusions 

Simulation of sEMG is important for testing algorithms and for a deeper 
understanding of muscle contraction. This paper introduces a new method for 
solving Poisson problems in multi layer plane domains (also cylindrical domains 
can be studied, by adapting the method to the geometry). The implementation of 
the results in a sEMG generation model for a bi-pinnate muscle covered by a fat 
layer provides representative simulated SFAPs. A simulation study based on the 
proposed method can help in interpreting sEMG signals detected from bi-pinnate 
muscles. 
     The analytical solution of the Poisson problem is obtained in the Fourier 
transformed domain and in the spatial domain by numerical inversion of the two 
dimensional Fourier transform. The analytical solution in the Fourier domain is 
valuable for two reasons: 1. Fourier inversion is numerically efficient 
(logarithmic cost); 2. if an a-priori knowledge of the frequency band of the 
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solution is available, a proper sampling can be chosen to keep all the information 
(by Nyquist theorem); for sEMG the frequency band is 10-400 Hz in time 
domain, which corresponds to the spatial frequency with a relation depending on 
CV, Farina and Merletti [5].  
     As Poisson equation models different interesting physical and biological 
situations, the proposed method can find other applications. For example, other 
electrostatics problems can be addressed. Moreover, Poisson equation is obtained 
when a steady state solution of diffusion equations is studied (with application 
on heat transfer problems, pollutant dispersion, population dynamics,…). 
Another example of application comes from continuum mechanics theory: 
momentum conservation law can be reduced to Poisson equation in steady 
conditions, neglecting inertia, and assuming a linear constitutive relation for the 
stress tensor.  
     The proposed technique allows one to handle Poisson problems defined on a 
medium constituted by sub-domains with different characteristics. Such 
problems can be studied numerically by domain decomposition techniques. New 
techniques can be developed on the basis of the proposed method to interface a 
domain for which a numerical solution (for homogeneous Neumann and 
Dirichlet problems) is known with another for which an analytical solution is 
available. 
     Thus, this method could find further applications in addressing new problems 
in the applied sciences.   
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