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Abstract 

We used a prospective clinical trial to generate physiologic data to create 
subject-specific in silico (computer simulation) models of intracranial pressure 
dynamics in children with severe traumatic brain injury. The trial included a 
physiologic challenge protocol with changes in head-of-bed elevation and minute 
ventilation, applied over multiple iterations to three subjects. Physiologic signals 
(electrocardiogram, respiration, arterial blood pressure, intracranial pressure 
[ICP], oxygen saturation) were recorded continuously, along with clinical 
annotations indicating the precise timing of physiologic challenges. Several 
parameters within the model of ICP dynamics were estimated for each subject 
based on the ICP response to the challenges. Estimation was done using a 
standard optimization algorithm to minimize the difference between the ICP 
trajectory predicted by the model and the actual ICP data. The ICP trajectory 
predicted by the model was similar to the actual ICP data in all cases, and the 
mean absolute error varied between 0.5 - 2.8 mmHg (mean = 1.4mmHg). These 
results demonstrate the potential for using clinically annotated prospective data 
to create subject-specific computer simulation models. Future research will focus 
on improvements in the logic for cerebral autoregulatory mechanisms and 
physiologic adaptation. 
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1 Introduction 

Our goal is to develop tools that can be used improve the care of children with 
severe traumatic brain injury (TBI). Section 2 provides background material 
regarding the importance of the problem—the need to improve our 
understanding of intracranial pressure (ICP) dynamics during TBI. A brief 
review of prior research is also provided. Our method, described in Section 3, is 
to create subject-specific in silico ICP dynamic models using clinically annotated 
data of each subject’s response to a physiologic challenge protocol. The results 
of the study are documented in Section 4 and are presented in both tabular and 
graphical formats. A discussion of the results is provided in Section 5. 

2 Background 
TBI is the leading cause of death and disability in children under 18 years old, 
causing more than 50% of all childhood deaths. Each year, more than 150,000 
pediatric brain injuries result in about 7,000 deaths and 29,000 children with 
new, permanent disabilities. The death rate for severe TBI (defined as a Glasgow 
Coma Scale score < 8) remains between 30%-45% at major children's hospitals 
[1] [2]. A recently published evidence-based medicine review reports that 
elevated pressure in the brain (ICP) is a main determinant of outcome following 
TBI and is strongly correlated with both death and disability [3]. 

Despite the availability of many treatment options for reducing elevated ICP 
(defined as > 20 mmHg), poor outcomes still occur, often due to elevated ICP 
that is unresponsive to therapy. Treatment options for severe TBI include 
draining cerebral spinal fluid (CSF) via a ventriculostomy catheter, raising the 
head-of-bed (HOB) elevation to 30° to promote jugular venous drainage, and 
inducing mild hyperventilation [3]. The underlying pathophysiologic 
mechanisms governing ICP regulation and the mechanisms by which treatment 
affects ICP remain poorly understood [4]. 

We suggest that new approaches are needed to help improve diagnosis, 
treatment, and outcome following severe TBI. We hypothesize that an in silico 
model of ICP dynamics to test various therapeutic options for elevated ICP in a 
virtual (computer simulated) patient before treating the actual patient will 
improve care of acute elevations in ICP and may also improve long-term 
outcome following severe TBI. 

2.1. Prior work by other researchers 

Over the past 30 years, a variety of computer models for calculating ICP 
dynamics have been published in the biomedical engineering literature (c.f. 
[5-8]). These models use differential equations to calculate the pressure at 
different points within the system, taking into account the blood vessel and 
anatomic compartment volumes and compliances. Although useful mathematical 
results and insights have been gained from these models, their impact on clinical 
practice has been modest. Reasons for this limited impact may include the 
complexity of the models and the limited range of bedside in vivo clinical 
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scenarios represented. Researchers have attempted to address these limitations by 
simplifying their models (c.f. [9]) and adding needed functionality. 

2.2. Prior work by the investigators 

In our subject-specific in silico model, fluid volumes and flows are explicit 
within the model and we incorporate specific physiologic parameters and 
mechanistic logic. The resultant model [10] is similar in many ways to 
previously reported dynamic ICP models in that it considers the cranial vault to 
contain the brain parenchyma plus several fluid “compartments” that together are 
constrained not to exceed the total cranial volume. The fluid compartments 
include the arterial blood volume, capillary blood volume, venous blood volume, 
CSF volume, the brain volume, and “other” volume that may or may not be 
present in a particular patient (e.g. epidural hematoma, subdural hematoma, 
intraparenchymal hemorrhage, etc.). In our model, brain volume can be either 
constant or variable, based on the presence or absence and degree of cerebral 
edema. 

As with previously published models, we model cerebral autoregulation (a 
key physiologic mechanism) as a feedback loop that causes the cerebral 
vasculature to dilate or constrict, taking into account control limits that are non-
linear and asymmetric. Our control logic acts only on the flow of blood from the 
arterial compartment to the capillary bed. The control logic is proportional and 
has enough “gain” that it can easily maintain the required flow under normal 
conditions. However, if the venous or arterial volumes are severely reduced, as is 
often the case with severe TBI, the associated nonlinear increases in resistance 
can “overwhelm” the model’s simplified control logic in an unrealistic fashion. 

The main difference between our in silico ICP dynamic model and 
previously reported models is that the state variables are modeled as volumes 
rather than pressures, and we clearly identify fluid flows into and out of each 
compartment. This approach is more intuitive and may more accurately represent 
in vivo pathophysiologic processes. Blood pressures are computed from the 
volumes of the blood compartments and their associated compliances. ICP (the 
CSF pressure within the cranial vault) is computed using the total intracranial 
volume and the pressure volume index [5]. 

Our model incorporates logic associated with severe TBI pathophysiology, 
including the “other” volume mentioned above, ongoing intracranial bleeding, 
and focal or generalized cerebral edema. The model also incorporates common 
therapeutic interventions such as elevation of the HOB and changing the minute 
ventilation to induce mild hyperventilation (decreasing PaCO2 to 33-35 mmHg). 
We have previously shown that the behaviour of our model was qualitatively 
correct [11], and we were able to manually calibrate the model so that it 
replicated clinical data from two prior subject-specific cases [12]. 

3 Methods 
A physiologic challenge protocol was applied over multiple iterations to three 
subjects with severe traumatic brain injury. Parameters were then estimated to 
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configure a computer model of ICP dynamics to the specific characteristics of 
each subject. 

3.1. Physiologic challenge protocol and data collection  

This study was approved by the Institutional Review Board at Oregon Health & 
Science University. Following informed consent, physiologic challenges were 
randomly administered over a 2-3 hour period. These included: 

1) Altering the head of the bed (HOB) elevation in random order between 0° 
and 40°, in 10° increments or decrements at 10-minute intervals. 

2) Increasing minute ventilation (hyperventilation) or decreasing minute 
ventilation (hypoventilation), in random order, while keeping the tidal volume 
fixed to achieve an end-tidal CO2 (ETCO2) of [-3 to -4] mmHg and [+3 to +4] 
mmHg from baseline values. At each target ETCO2, PaCO2 was checked via 
arterial blood gas to ensure that the ETCO2 reflected accurate changes in actual 
PaCO2. If not, then minute ventilation was further adjusted, and ETCO2 and 
PaCO2 were rechecked at each target level of hyper- and hypoventilation was 
maintained for 15 minutes. 

Throughout the challenge protocol, physiologic signals (ICP, blood 
pressure, electrocardiogram, airway pressure, etc.) were continuously recorded, 
along with clinical annotations to indicate the precise timing of the physiologic 
challenges and therapeutic interventions.  

3.2. Model estimation method 

The changes specified by our physiologic challenge protocol served as primary 
inputs to the ICP dynamic model. These changes to HOB and minute ventilation 
entered the model as step functions at the times specified in the clinical 
annotations to the data. There were no other time-based inputs to the model; all 
other parameters were either initial values or constants. Although the protocol 
sessions provided multiple physiological signals for each subject, the only 
measurement used by the model was the ICP signal used to compute error when 
tuning the model to a subject-specific session. 

The ICP signal was captured at 125 Hz. Since the model sought to capture 
only the time behaviour of mean ICP, the high-frequency components of the 
signal were ignored. Therefore, the data was decimated and a lowpass filter was 
applied, yielding smoothed data at a sample rate of 5 Hz, which removed most of 
the pulsatile component. This data was still noticeably more complex than the 
output of our model, but our research showed that further simplification 
threatened to remove important features of the ICP data. 

The in silico model of ICP dynamics is patterned after models previously 
reported in the literature and enhanced through incorporation of subject-specific 
data from the physiologic challenge protocol. The model was first implemented 
using the STELLA® modeling software, due to its ease of use for initial 
conceptualization and experimentation. This platform proved limited in terms of 
data handling, integration, and incorporation of other algorithms. Consequently, 
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the model was ported to MATLAB Simulink®. This simulation environment has 
proven to be more technically robust and easily handles large data sets.  Figure 1 
shows a block diagram of the model. 
 

 
Figure 1: ICP dynamic model, as implemented in Simulink. The primary 

state variables are the six volumes (arterial, brain, capillary, CSF, 
hematoma, and venous), represented by the green shadowed 
“flowchart” icons. Each of the flowchart icons in this figure 
represents a masked subsystem containing additional model logic. 

The state variables in the model are the volumes of the various fluid 
compartments. Changes in these volumes cause changes in pressure. Pressure 
changes affect the flows, which in turn impact the volumes. These feedback 
loops dominate the behavior of the model, and the most influential of them is the 
ICP loop itself. ICP is a function of the sum of the six volumes in the model. ICP 
also directly influences four of those volumes: arterial blood, capillary blood, 
CSF, and venous blood. The other two volumes, representing the brain 
parenchyma and hematoma, influence ICP but are not influenced by ICP in our 
model. The inputs from the physiologic challenge protocol are each simulated in 
the model by specific blocks for that purpose. 

The underlying physiology of these systems is very complex and not 
completely understood, so our model is necessarily a simplification of in vivo 
processes. In our model, changing the angle, θ, of the HOB changes arterial 
pressure and ICP by an amount that is proportional to sin(∆θ). Relative to HOB 
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changes, the effects of changing minute ventilation are much more complex. 
Minute ventilation is the product of the respiratory frequency (or respiratory rate, 
RR) and tidal volume (the volume of inspired air with each breath). As tidal 
volume was held constant in all the physiologic challenge protocols, we have 
used RR to represent any changes in minute ventilation. Changes in RR directly 
affect PaCO2, which is a vital part of the cerebral autoregulation mechanism—
another complex feedback loop in our model. An increase in RR causes a 
decrease in the indicated blood flow and a subsequent increase in capillary 
resistance, through the mechanism of the PaCO2 effect on smooth muscle tone. 
The increase in capillary resistance decreases the arterial-to-capillary flow to 
match the indicated flow, and also affects arterial blood volume. This loop is 
problematic, as will be discussed later. 

Besides the state variables (volumes) and inputs (physiologic protocol 
challenge data), the other dynamic quantities in the model are the parameters 
used for fitting. These physiologic parameters were estimated for each subject 
based on the measured ICP response. The estimation was done by varying the 
parameters with the objective of minimizing the squared error between the ICP 
trajectory predicted by the model and the actual ICP data. This optimization was 
performed using single parameters during sensitivity testing and model 
exploration. After the effects of the different parameters were better understood, 
several of them were selected for use with a nonlinear optimization algorithm, 
MATLAB’s lsqcurvefit. This algorithm was allowed to run either until error 
reduction ceased or until a certain number of iterations had been completed. The 
algorithm required many simulations of the model to be run, each with slightly 
different parameter values. Since each run can take several minutes to complete, 
the entire nonlinear optimization process can require up to several hours. 

The process of fitting the model to the data also involved making 
adjustments to the parameters of the differential equation solver. The model is 
sensitive to the sample time used by the solver, such that under certain 
conditions and certain parameters the solver caused one of the state variables to 
exceed its bounds. Errors sometimes occurred because the volumes in the model 
are very small relative to the flow over a given length of time. This can cause a 
volume to temporarily become zero or negative during the calculation update 
interval, leading to mathematical errors in the solver and erratic behavior in the 
model. In order to avoid these errors, the sample time of the solver was 
maintained as low as 1/18,000 min. However, to decrease the computational 
requirements, the sample time was maximized when possible. In some 
simulations, the much larger sample time of 1/900 min. was found to be 
acceptable. 

4 Results 
We found that the ICP trajectory predicted by the subject-specific in silico model 
was qualitatively very similar to the in vivo ICP data in all cases. The predicted 
trajectories matched the ICP data best following HOB elevation challenges, 
frequently achieving mean absolute errors of <1.0 mmHg. The simulations of RR 
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challenges did not perform quite as well, but were still able to capture major 
features of ICP behavior. 

Table 1 compiles the results of several of the model’s fitting sessions. In 
each case, the nonlinear optimization algorithm was allowed to vary 6-8 
parameters. The parameters were chosen from the following group based on 
sensitivity testing and their applicability to the particular challenges of the 
session: autoregulation volume loss, basal cranial volume, CSF drainage rate, 
hematoma increase rate, ∆ pressure time constant (a smoothing parameter 
associated with HOB elevation change), ETCO2 time constant (a smoothing 
parameter associated with RR changes), smooth muscle gain (a multiplicative 
factor related to the impact of smooth muscle tension), and systemic venous 
pressure. The fitting process was run for several iterations, or until the change in 
the sum of the squared errors fell below a certain tolerance. The objective 
function was to minimize the sum of squared errors, ignoring some outliers (for 
example, at the start of a simulation run or where the actual ICP data showed 
likely measurement discrepancies).  Figures 2 to 5 show example results 
graphically. 

Table 1:  Results of model fitting to 8 subject sessions. 

Subject & 
Session 

Session 
Length 
(minutes) 

Mean 
Absolute Error 
(mmHg) 

Approximate 
Fitting Time 
(minutes) 

Number and 
Types of 
Challenges 

P1, S1.5 12  0.923 5  1 HOB 
P1, S3 18  0.906 8  1 HOB 
P1, S4 46  1.689 20  1 HOB, 3 RR 
P2, S1 58  0.570 30  4 HOB 
P2, S4 67  0.486 120  2 RR 
P2, S7 110  2.337 180  5 HOB, 4 RR 
P2, S7a 55  1.624 90  5 HOB 
P2, S7b 55  2.810 90  4 RR 
   Mean = 1.418    

5 Discussion 
Although the in silico model was able to accurately predict ICP responses to 
HOB changes, the model was less accurate when predicting responses to RR 
changes. Specifically, the model was unable to predict systemic adaptation, as 
when sequential events diverged from, and then returned to, a particular value. 
For instance, in P2S7 (see Figure 5), when HOB moved from 30º to 0º and back 
to 30º, the ending in vivo ICP was lower than its original value. However, in the 
model, ICP returned to its original value. Another inadequacy of the model 
occurred when a series of events were temporally clustered. These events did not 
have the same effect on the actual ICP as when they were temporally dispersed, 
and the model was not able to capture that interaction. Finally, the model was not 
able to display the range of amplitudes associated with RR physiologic protocol 
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challenges. We believe this is due at least partially to deficiencies in the 
autoregulation logic in the model, such that changes in smooth muscle tone 
affect the resistance of arterial-to-capillary blood flow but do not explicitly affect 
arterial volume. 
 

 

Figure 2: Patient 1, Session 4. A series of changes to HOB elevation and RR. 

 

 

Figure 3: Patient 2, Session 1. A series of changes to HOB elevation. 

In summary, our findings indicate the need to add systemic adaptation logic 
to the model and revise the cerebral autoregulation logic. Data from additional 
subjects will help to further our understanding of cerebral pathophysiology and 
to generalize the in silico model to fit multiple clinical conditions. Additional 
data will also aid in the selection of optimization parameters and processes. 
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Figure 4: Patient 2, Session 4. A series of changes to RR. 

 

 

Figure 5: Patient 2, Session 7. A series of changes to HOB elevation and RR. 

Finally, although the results presented here demonstrate that the in silico 
model is capable of being tuned to accurately reflect ICP behavior in specific 
subjects during specific clinical events, we are concerned that the current 
optimization process manipulates parameters that may not correlate with any 
known physiologic process or mechanism. This is only acceptable for a proof of 
concept model. We expect that future work will lead to a stronger connection 
between physiology and optimization, while also simplifying the process and 
bringing us closer to our goal—a virtual patient that responds realistically to 
different treatment strategies. 
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