
A modeling study of idiopathic intracranial
hypertension

S. A. Stevens1, W. D. Lakin2, N. J. Thakore3, P. L. Penar2

& B. I. Tranmer2
1 School of Science, Penn State Erie, The Behrend College, U.S.A.
2 The University of Vermont, U.S.A.
3 MetroHealth Medical Center and Case Western Reserve University,
U.S.A.

Abstract

Idiopathic intracranial hypertension (IIH) is a syndrome of unknown cause char-
acterized by elevated intracranial pressure (ICP). A stenosis of the transverse sinus
is observed in many patients suffering from IIH. The role that this feature plays
in the etiology of IIH remains unresolved. It may be the primary cause of IIH,
an exacerbating factor, or merely a secondary event. A lumped-parameter model
of intracranial pressure dynamics has been modified to accommodate transverse
sinus stenosis via a Starling-like resistor. In the absence of this type of resistor
the system has a unique asymptotically-stable steady-state with normal pressures.
With this type of resistor present, a second, asymptotically-stable steady-state may
exist. This state is characterized by elevated ICP concurrent with a compressed
transverse sinus. It is hypothesized that IIH is a physiological manifestation of this
elevated steady state. We conclude that the primary cause of IIH is a compressible,
as opposed to rigid, transverse sinus, and that the observed stenosis is a necessary
characteristic of the elevated steady state. Simulations suggest possible diagnostic
techniques and comparisons are made to clinical data.

1 Introduction

Idiopathic intracranial hypertension (IIH), also called pseudotumor cerebri and
benign intracranial hypertension, is a syndrome of unknown cause characterized
by elevated intracranial pressure (ICP) without evidence of ventricular dilatation,
mass lesion, cerebrospinal fluid (CSF) abnormality, or dural sinus thrombosis. It
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presents with symptoms of headache, nausea, vomiting, papilledema, and visual
obscurations [1]. In many patients suffering from IIH, a stenosis or tapering of the
transverse sinuses is observed by magnetic resonance venography or retrograde
catheter venography [2, 3, 4]. The role played by transverse sinus stenosis in the
etiology of IIH has been unresolved and is a major focus of the present study.

A lumped-parameter model of intracranial pressure dynamics is utilized to
explore the relationship between IIH and transverse sinus stenosis. In previous
models of this type [5, 6, 7, 8] the sinuses have been considered rigid so as to
withstand the negative transmural pressure normally endured by these vessels. In
the present work, the model in [7] has been modified so that this assumption is no
longer made. Specifically, the resistance to venous sinus drainage is formulated to
be sensitive to transmural pressure changes. This modification now allows for par-
tial collapse of the transverse sinuses in the face of elevated ICP with a resulting
increase in resistance to venous sinus drainage.

2 The lumped parameter model

A diagram of the lumped-parameter model that has been enhanced for this study
is shown in Figure 1. Previously, this model has been used to study steady-state
intracranial pressures in microgravity [7]. A brief description of the model is given
below. A full description that includes calibration of the normal parameter values
is given in [7].

2.1 Features of the mathematical model

Cerebral blood flow (QIC) and CSF formation by the choroid plexus (QCF ) are
considered constant in the current application. Filtration from the intracranial cap-
illaries across the blood-brain barrier (QCB) is modeled by the Starling-Landis
equation involving both hydrostatic and osmotic forces. All other flows are related
to pressure differences by

Qij = (Pi − Pj)/Rij = Zij(Pi − Pj), (1)

where Qij is the flow from compartment i to compartment j , Pi and Pj are
the spatially-averaged pressures of compartments i and j respectively, Rij is the
lumped resistance, Rij = −Rji, and Zij is the fluidity (inverse of Rij). Volume
adjustments between adjacent compartments are related to changes in pressures
by local compliance parameters Cij = Cji. Applying the law of conservation of
mass in compartments I,C,S,F,B, and T results in a set of governing differential
equations defined in matrix form by

C
dP

dt
+ Z P = Q, (2)

where P = [PI , PC , PS , PF , PB, PT ]tr, C is a compliance matrix, Z is a fluidity
matrix, and Q is a vector of forcing terms that involves extra-cranial pressures and
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Figure 1: A diagram of the lumped-parameter model. The dark line represents
the rigid cranial wall. Qij represents fluid flow from compartment i to
compartment j. Arrows indicate the customary direction of flow. Qinf

represents an infusion rate of CSF. Cij represents a distensible surface
between compartments i and j. The Starling-like resistor described in
this paper is associated with QSV .

known flows. The matrix equation (2) may appear to be linear, but entries in the
compliance and fluidity matrices will be functions of compartmental pressures and
time, introducing nonlinearities.

If the oscillatory effects of the forcing terms in Q are subtracted, the solution
of (2) is a set of time-dependent intracranial pressures averaged over each cardiac
cycle. It was shown [7] that if the fluidity terms in Z are all constants then all
solutions of (2) will tend to a unique steady state. For the current investigation,the
fluidity term ZSV is no longer constant but is allowed to be pressure sensitive.
With this modification, convergence to a unique steady-steady state is no longer
guaranteed. Indeed, analysis of the various possible steady-states and their stability
properties constitutes a major portion of the mathematics involved in this work.
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2.2 The Starling-like resistor

A Starling resistor in a model for fluid flow through a collapsible vessel is a resis-
tance term that is dependent upon transmural pressure. When transmural pressure
is large, the vessel is considered open and the resistance to flow is small. Con-
versely, if the transmural pressure is small or negative, then the vessel is partially
or completely collapsed resulting in a large (or possibly infinite) resistance. In
many models [8, 9, 10], a Starling resistor has been placed at the location where
the cerebral veins empty into the saggital sinus near the cerebral lacunae. Further
downstream, Pedley et al. [11] suggest a similar phenomenon in the jugular vein
of the giraffe. A common feature of these locations is that the transmural pressure
is positive in the normal resting state. Starling resistors have not previously been
introduced into the venous sinuses because normal transmural pressure in these
vessels is negative, and rigid walls were assumed to prevent collapse.

The observed stenosis of the transverse sinuses in IIH patients suggests that the
venous sinuses are not completely rigid. Therefore, to allow for collapse we will
introduce a Starling-like resistor dependent on transmural pressure at the trans-
verse sinus level of the model to represent the resistance to flow from compart-
ment S to V. The traditional form of a Starling resistor does not apply at this point
in the vasculature as the normal transmural pressure is negative, so the Starling-
like resistor for the fluidity ZSV = 1/RSV will be defined in such a way that this
fluidity term is positive despite the transmural pressure PV − PT being negative.
However ZSV will decrease (resistance will increase) when PV − PT becomes
more negative. In particular, ZSV is defined by

ZSV = Max
[
ZSV

(
1 − m(PTV − PTV )

)
, p ZSV

]
0 ≤ p ≤ 1. (3)

Here, PTV = PT − PV , an overbar indicates the normal resting value, and Max
refers to the larger of the two terms. The graph of the relationship between ZSV

and PTV is piecewise-linear and continuous with an initial decreasing straight
line segment of slope -mZSV that passes through the scale point (PTV , ZSV ),
calibrated as in [7]. From equation (3), p ZSV is the minimum value of ZSV ,
and beyond the pressure difference PTV that produces this minimum the graph
of ZSV is a horizontal line at this minimum value. It may well be the case that
in healthy individuals no such Starling-like resistor is present and the sinuses are
indeed rigid. This is achieved in the model by setting m = 0 and the fluidity is
therefore constant.

A minimum on ZSV in equation (3) is imposed for three reasons. First, fluidity
cannot be negative. Second, even in the face of ICP equal to arterial pressure there
was only an 80% reduction in cerebral blood flow according to the model presented
by Tym et al. [12]. Finally, there may be other pathways for venous drainage [13].

Two unique features of this Starling-like resistor should be noted. First, as dis-
cussed above, the transmural pressure is negative in the normal state. A second
unique feature is that this resistor is based on the transmural pressure in a down-
stream compartment V as opposed to the upstream compartment S. One reason
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for this choice is that the resistance (RSV ) in a lumped parameter model repre-
sents the total resistance between pressure reference points PS and PV . Therefore
some of the resistance due to flow through compartment V is represented by RSV .
Further, it has been shown [14] that when a compliant vessel with internal flow
starts to collapse due to a uniformly applied external pressure, it does so at the
furthest downstream location. When this occurs, the change in total resistance is
due to the collapse at this point, and the degree of this collapse will be dependent
upon the difference between the external and downstream pressures.

3 Steady state analysis

The complexity and the number of equations involved in the current model make
analytic results for potential steady states nearly impossible to obtain. Rigorous
analysis of an analogous two compartment model was used to guide numerical
results for the current model to obtain the conclusions presented in this section.

With the introduction of a pressure sensitive fluidity term ZSV , a steady state,
or equilibrium solution, to equation (2) is no longer constrained to be unique, and
the number of steady state solutions be may increase from unity, depending on the
values of the parameters m and p in equation (3). An increasing straight line

m = αZSV (QSV )−1p+QFV (QSV PSV )−1 where α = 1+ZFV (ZFS)−1 (4)

now divides the m-p parameter plane into regions. Below this line there is one
steady state and above it there are three. In the region with one steady state, that
unique state is represented by a stable node in phase space that is associated with
normal pressures. In the region with three steady states, one state is the original sta-
ble node of normal pressures, a second state is an unstable saddle point of elevated
pressures, and the third state is another stable node with elevated pressures. Thus
the dividing line in the m-p parameter plane is a saddle-node bifurcation curve.

This situation is clearly seen in Figure 2, which gives an example of the PS-
PT phase plane. When there are three steady states the two unique trajectories
that lead to the unstable saddle point delineate the basins of attraction to the two
stable nodes. Other than the two theoretical trajectories that lead to the saddle
point, all other trajectories will tend to one or the other of the two stable states, so
convergence to the saddle point is never realized in practice. The three points lie in
a line, and the value of p determines the location of the stable node while the value
of m determines the location of the saddle point. As p decreases, the stable node
with elevated pressures moves up and to the right. Therefore the magnitude of the
pressures in the elevated state is determined by p. As m decreases, the saddle point
moves up and to the right as well. Therefore, as m decreases so does the likelihood
of a transition from the base-value state to the elevated-state.
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Figure 2: The Ps-Pt phase plane portrait in the case of three steady states. Here,
p = 0.06 and m = 0.04 and all other parameter values are taken
from [7].

4 Time dependent simulations of CSF infusion/withdrawal

The current model was used to study the response of lumbar CSF pressure to
CSF infusion and withdrawal. In the case of a temporary infusion, the initial state
was taken as the stable base state with normal pressures, and simulations with
the Starling-like resistor both present and absent were run. These time-dependent
simulations indicate that a rapid transition from a normal to an elevated steady
state in response to such an infusion is a key predictor of the presence of a com-
pressible transverse sinus and susceptibility to IIH. The present infusion results are
illustrated in Figure 3 where the solid curve describes the response of PT when a
Starling-like resistor is present and the dashed curve depicts the predicted response
to an identical infusion when no Starling-like resistor is present, i.e. m = 0 in
equation (3). These simulation results are in full accord with the clinical findings
of Higgins and Pickard [3] who reported that after an IIH patient was successfully
treated with a shunt implant, the patient’s CSF pressure still exhibited a ”rapid”
increase from normal in response to infusion.

For the time dependent simulations in the complementary case of a tempo-
rary CSF withdrawal, typical results are depicted in Figure 4 which compares the
responses of PT and PS . A Starling-like resistor is assumed present in these sim-
ulations, and indicative of IIH the initial state was taken to be the stable elevated
pressure state for the chosen parameter values. A sharp transition drop in pres-
sures is again observed in these simulations, although at the termination of the
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withdrawal PT and PS tend to the normal pressure state at different rates. As seen
in Figure 4, the saggital sinus pressure rapidly assumes its normal value while
the lumbar CSF pressure undershoots its normal value and then has a slow return
toward normal CSF pressure.

0 10 20 30 40
min

15

20

25

30

35

P
T
 i
n
m
m
H
g

Figure 3: The simulated CSF pressure (PT in mmHg) response to an infusion rate
of 2 ml/min for 5 minutes starting at t = 5 minutes. Solid: a Starling-like
resistor with p = 0.1 and m = 0.08. Dashed: no Starling-like resistor.
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Figure 4: The simulated CSF (solid) and saggital sinus (dashed) pressure response
to a withdrawal rate of 5 ml/min for 5 minutes starting at t = 5 minutes.
In both cases there is a Starling-like resistor with p = 0.1 and m = 0.08
starting at the elevated state.
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5 Comparisons with clinical data

As an indication of the ability of a Starling-like resistor located at the transverse
sinus to explain aspects of IIH, it will be demonstrated that the reported clinical
observations of King et al. [4] for IIH patients can be interpreted by using the
present model with appropriate calculated values for the resistor parameter p and
the scale pressure PT . In the comparison simulations, the value of the parameter
m is assumed sufficiently large that, consistent with the measured data, an elevated
steady state exists.

We will consider the three cases in [4] where CSF and various venous pressures
were measured before and after a 20 to 25 ml CSF withdrawal. This data is given
in the first 6 columns of Table 1. The data measured prior to CSF withdrawal is
assumed to be that of an elevated IIH pressure state and is indicated by a super-
scripted asterisk. The results depicted in Figure 4 indicate that the CSF pressure
response after the withdrawal will drop below the normal base value while the sag-
gital sinus pressure after the withdrawal will be indicative of the actual base-value
state. It is therefore assumed that the base-value state of the saggital sinus pres-
sure is that measured immediately after the CSF withdrawal, and this is denoted
by an overbar. This value is then used to estimate the value of p in the Starling-like
resistor under the assumption that CSF production and cerebral blood flow remain
constant. The estimated value of p is given in the seventh column of Table 1. The
normal base value for the lumbar CSF pressure PT , displayed in the eighth col-
umn of Table 1, is then predicted to achieve the observed elevated state in columns
1 through 3. For Patient 2 in row 2 of Table 1, no value for PT could be calculated
to give the observed elevated pressure state unless the percentage of CSF produc-
tion normally absorbed into the saggital sinus was reduced from 75% [15] to 50%.
When this adjustment was made, a base value CSF pressure of 12.85 mmHg was
estimated.

Row 1 of Table 1 shows that for Patient 1 the CSF pressure after the withdrawal
is well below the predicted normal base CSF pressure. It appears that this mea-
surement was taken immediately after the termination of the large withdrawal and
reflects the well value of the previously-noted undershoot of the normal base value
PT by PT . By contrast, the measured values of PT and the predicted normal val-
ues PT for Patients 2 and 3 are relatively close indicating that these measurements
were probably taken at a time beyond the undershoot when PT was approaching
its normal base value.

6 Discussion

In many mathematical models of intracranial blood flow, a Starling or Starling-like
resistor is assumed to exist at the location of collapsible veins [8, 9, 10, 11]where
the normal transmural pressure is positive. At the location of the transverse sinus,
however, the normal transmural pressure is negative, and so these vessels have
traditionally been considered rigid leading to resistance (or fluidity) terms that are
assumed constant. In order to accommodate the observed stenosis of these vessels
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Table 1: Data from three IIH patients [4] before and after a 20-25 ml CSF with-
drawal and the resulting parameter assignments to the model. Pressures
are in mmHg.

Before withdrawal After withdrawal Parameter Assignments

P ∗
T P ∗

S P ∗
V PT PS PV p PT

33.1 20 4 3.7 2 0 0.125 16.1

29.4 35 6 12.5 9 8 0.034 12.85

26.5 20 6 19.1 14 5 0.643 20.8

in IIH, a Starling-like resistor has been introduced into the present mathematical
model at the location of the transverse sinus. The variation of this resistor is based
on the transmural pressure difference just downstream from the collapse point.

A steady-state analysis of the current model demonstrates that when collapse
of the transverse sinus is allowed, an additional stable steady-state with elevated
pressures may be present as a solution of the system. It is hypothesized that IIH is
a physiological manifestation of this additional stable elevated pressure state, and
that a requirement for the development of IIH is a collapsible, as opposed to fully
rigid, transverse sinus. Temporal simulations suggest that in clinical data rapid
transitions between normal and elevated states in response to CSF infusions or
withdrawals are indicative of the presence of such collapsible vessels in a subject.
A notable finding is that there appears not to be a tight range for the parameter p
in equation (3) associated with potential IIH. When this parameter was calculated
from the limited data in Table 1 the values of p ranged from .034 to .643. Addi-
tional measured data from IIH patients is required to fully validate the present
hypotheses.
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