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Abstract

We present an automated optimization procedure to enhance the characterization
of biological systems with electron paramagnetic resonance (EPR). EPR is a phys-
ical phenomenon exploited in EPR spectroscopy to detect changes in organisms
caused by biologically active substances or resulting from pathological condi-
tions. In the past, EPR spectral characteristics were interpreted manually, while
nowadays numerical spectrum simulation makes it possible to obtain more reli-
able and biologically meaningful information about the inspected system. For this
purpose, the parameters of the spectrum simulation model need to be tuned so
that the resulting simulated spectrum matches with the experimentally obtained
EPR spectrum. To search for appropriate parameter values, we have integrated the
simulation model with an evolutionary optimization algorithm. QOur initial results
indicated that this approach alleviates the weaknesses of previously used human-
navigated optimization techniques and saves much of the spectroscopist’s time. In
this paper we provide further empirical results on the robustness of this approach
and its application in cell membrane characterization.

1 Introduction

Electron paramagnetic resonance (EPR), also known as electron magnetic reso-
nance (EMR) or electron spin resonance (ESR), denotes the physical phenomenon
of absorption of microwave radiation by paramagnetic molecules or ions exposed
to an external magnetic field. This phenomenon is exploited in EPR spectroscopy,
which is a nondestructive method suitable for inspecting biological systems in their
complex environments. The only altcration required for the native system js the
insertion of spin probes or some other stable radicals into the system. An important
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property of EPR spectroscopy is its ability of detecting heterogeneity in inspected
systems. Heterogeneity reflects in superimposed EPR spectra consisting of several
speciral components, also called domains. They arise from various compartments
of the inspected system that exhibit different physical characteristics. Heterogene-
ity comes into play in the final stage of EPR inspection where the EPR spectrum
needs to be interpreted. In the past, spectrum interpretation was performed man-
ually by measuring spectral peak characteristics and analyzing their relationships.
However, experimental EPR spectra provide much more reliable and biologically
meaningful information when characterized by computer-aided spectrum simula-
tion. Using an appropriate biophysical simulation model, it is possible to resolve
different spectral components indicating different anisotropy and/or dynamics of
the spin probes in various compartments of the inspected system [1, 2].

Model-based EPR spectrum interpretation requires the parameters of the bio-
physical model to be tuned so that the simulated spectrum matches with the
recorded spectrum. When solving this problem with traditional single-point opti-
mization techniques, a spectroscopist needs to provide good starting parameter val-
ues and perform a sequence of algorithm runs. As this approach is lime-consuming
and requires active user participation, an automated optimization procedure would
allow the spectroscopist to focus on experiments and obtain better insight into the
inspected biological system.

Potential candidates for automating parameter optimization in EPR spec-
troscopy are evolutionary computation techniques [3] that are successful in find-
ing near-optimal solutions in complex search spaces. We tested this approach by
integrating a spectrum simulation model with an evolutionary algorithm. The inte-
grated system was experimentally evaluated on synthetic EPR spectra [4], and the
results were promising both with regards to the accuracy of the resulting spectral
parameters and the time spent by a spectroscopist using this method. The optimiza-
tion procedure was upgraded into a hybrid version by incorporating the downbhill
simplex algorithm. This improvement resulted in higher accuracy and faster con-
vergence of the method [5]. This paper provides new results on the robustness of
the method and its results in cell membrane characterization. Unlike in previous
experiments, where synthetic specira were used, this study is based on real data
obtained in spectroscopic inspection of liposomes.

The paper presents EPR spectroscopy as a method for characterization of bio-
logical systems, describes the parameter optimization procedure and recent exper-
imental results in cell membrane characterization, and concludes with a summary
of the work done and plans for the future work.

2 EPR spectroscopy in characterization of biological systems
2.1 Background
EPR spectroscopy is a powerful technique for characterization of biological sys-

tems, particularly when combined with physiological experiments. Combining the
two approaches, we can measure various physiological quantities, such as, for
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example, biochemical response of a tissue, muscle contraction, cell culture sur-
vival, metabolic and antioxidant activity, etc. Additionally, we can determine EPR-
based parameters including domain weights, membrane fluidity, polarity, concen-
trations and others. By correlating measured physiological and EPR quantities,
both caused by the same external factor, we can connect macroscopic response
with microscopic changes in the structure and dynamics of the inspected system,
Such combined experiments were, for example, performed to correlate the mem-
brane characterization of plasma membranes of erythrocytes, activities of various
enzymes and receptors, and symptoms of various diseases, such as acute phase and
cancer.

2.2 Spectrum simulation and spectral parameters

In this study we apply EPR spectroscopy in cell membrane characterization. The
biophysical model used to numerically simulate the EPR spectra of spin labeled
membranes relies on the so called motional-restricted fast-motion approximation
[6). The model presumes multi-domain structure of a membrane and takes into
account fast and anisotropic rotational motion of molecules. These assumptions
are based on proven lateral heterogeneity of cellular membranes, as well as on
experimental setup which includes small spin-labeled molecules and physiclog-
ical temperatures. Parameters of the model provide information about ordering,
dynamics and the polarity at various locations in different membrane domains.
EPR spectrum simulation with motional-restricted fast-motion approximation
model requires the following parameters to be set for each spectral domain;

order parameter S,

rotation correlation time 7,

broadening constant W,

polarity correction factors p4 and p,, and
weighting factor d.

The order parameter S is the most important spectral parameter which in a way
characterizes the type of a domain. It indicates the anisotropy of the actual orien-
tation distribution relative to the membrane normal vector, Higher order parameter
value means more compact and ordered domain in the sense of the directions of
the molecular axes.

The rotational correlation time 7, characterizes rotational motions of the molec-
ular conformational changes. Larger values of rotational correlation times indi-
cate rotational motions with less collisions and changes in direction and speed of
motion.

The additional broadening constant W includes the effect of the spin-spin inter-
action in non-ideal diluted samples and contains information about the diffusion
constants and local concentrations of the spin probes in particular compartment of
the inspected system. Larger value of W indicates the increase of the product of
the diffusion constant and concentration.
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On the other hand, both polarity correction factors p4 and p, reflect changes in
the electron density distributions. They are influenced by the polarity of the local
environment of the spin probes or by any other source of the electric fields (for
example a group of polar molecules, electric charge double layer, etc.).

Finally, the weighting factor d denotes the proportion of a domain in the result-
ing simulated spectrum,

In general, for an EPR spectrum with k& domains, values of 6k — 1 spectral
parameters need to be determined. Since ZLI d; = 1, the weighting factor for
k-th domain, dy, is equal to 1 — 35— d;.

Given the values of spectral parameters, the calculation procedure produces a
simulated EPR spectrum. Figure 1 shows an example of the experimental spectrum
and Figure 2 the related three-domain simulated spectrum.
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Figure 1: An experimental EPR spectrum: signal intensity (in arbitrary units) ver-
sus magnetic field density B.

The oplimization task is 1o find parameter values such that the simulated spec-
trum fits with the experimental one as closely as possible. This task requires a
powerful optimization tool since the number of the involved parameters is high
and they are also partially correlated. The numerical spectrum simulation model
should therefore be coupled with an optimization method that can provide the val-
ues of model parameters both with required accuracy and in accepiable period of
time.

3 Optimization of spectral parameters

To automate the search for appropriate parameter values in EPR spectrum simula-
tion, an iterative numerical optimization procedure was designed. It consists of an
evolutionary algorithm (EA) which is hybridized by the downhill simplex method.
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Figure 2: Numerical simulation of the experimental spectrum from Figure 1: a)
spectral domains, b) the resulting spectrum.

Evolutionary algorithms [3] utilize the principles of natural evolution in com-
puter problem solving. The underlying idea is to search for a good solution to a
given problem through computer simulated evolution of candidate solutions. This
procedure starts with a population of randomly created solutions and iteratively
improves them by employing stochastic evolutionary mechanisms, such as survival
of the fittest and exchange of genetic information. Evolutionary algorithms exhibit
a number of advantages over traditional specialized methods and other stochastic
algorithms. Besides the evaluation of candidate solutions, they require no addi-
tional information about the properties the search space. By processing popula-
tions of candidates, they are capable of providing alternative solutions to com-
plex problems. They require low development costs and can be easily extended by
incorporating elements of other search algorithms.
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The EA for EPR spectral parameter optimization employs the real-valued vector
representation of candidate solutions. The number of vector components depends
on the number of the encountered spectral domains. For example, for a typical real
problem with three spectral domains (k = 3) there are 6k — 1 = 17 parameters
10 be optimized. The number of domains itself is not subject to optimization and
needs to be provided by the user.

To evaluate a vector of parameter values, the algorithm activates the simulation
model that generates a spectrum, and then assesses the goodness of fit of the simu-
lated spectrum with the one recorded in the EPR experiment. The quality measure
is the reduced x2, which is the sum of the squared residuals between the experi-
mental and simulated spectra normalized by the squared standard deviation of the
experimental points, o, and by the number of points in the experimental spectrum,
N:
exp 1m)2

(1)

The standard deviation & is assessed numerically from the experimental points
of those parts where the simulated spectrum derivatives are close to zero. This
is usually at both ends of the spectrum. The smaller the x2 value, the better the
seuting of the spectral parameters. To be used with the evolutionary algorithm, this
measure is transformed into an increasing fitness function by subtracting from a
large positive constant.

The population of candidate parameter settings is iteratively improved by apply-
ing operators typical of evolutionary algorithms: selection, which probabilistically
selects the best solutions from current population to participate in the next genera-
tion, crossover, which exchanges components between randomly selected pairs of
parameter vectors, and mutation, which randomly alters vector components. For
each spectral parameter the interval of possible values and step size are defined in
advance according to physical limitations and user preferences.

As preliminary numerical experiments reported in [4] indicate that the evolu-
tionary algorithm combined with other optimization techniques outperforms the
poor variant of the algorithm, we incorporated the downhill simplex method of
Nelder and Mead [7] into our algorithm. Downhill simplex is a deterministic multi-
dimensional optimization method which, like evolutionary algorithms, requires
only solution evaluations, not derivatives, and iteratively improves the solutions.
Hybridization of the evolutionary algorithm was achieved by executing downhill
simplex on probabilistically selected solutions during the evolutionary algorithm
run, and by applying it to the to members of the final population.

4 Experiments in cell membrane characterization

The EPR center of the Department of Solid State Physics at the JoZef Stefan Insti-
tute explores the lateral heterogeneity in various biologically and physiologically
important systerns. Examples of the inspected systems include human and other
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mammalian blood cells, nerve cells and muscle cells, as well as other eucari-
otic and procariotic cells exposed to or modified by biochemical and biophysi-
cal stress conditions, such as various diseases and other environmental changes.
Much of the research and experimental work is done in cell membrane charac-
terization since the knowledge on the membrane structure and functionality could
substantially improve our understanding of these complex systems. We have tested
the new optimization approach to EPR spectral parameter optimization on labeled
with lipophylic spin-probes. The membranes mimic the nerve cell membranes and
therefore represent an important example of lateral heterogeneity found in real
biomembranes.

4.1 Experimental setup

For the cell membrane characterization tests we used liposomes prepared from
phosphatidilcholine (we denote this sample as Lipo(PL)) and the mixture of phos-
phatidilcholine and gangliosides in molar ratio 4:1 (Lipo(PL+GL)). They were all
prepared in phosphate buffer solution (PBS) at pH = 7.4. The model membranes
were labeled with MeFASL (10,3) — spin labeled methyl ester of palmitic ester
using thin film preparation with ethanol evaporation. The label-to-lipid ratio was
less than 1:270. The measurements were performed in glass capillary at 9.6 GHz
EPR spectrometer at 35°C. For an additional variant of the problem the model
membranes were prepared in 30% sucrose PBS buffered solution (we refer to this
instance as Lipo(PL+GL)-SUC). For each of the three test problems the EPR spec-
trum consisting of 1024 data points was recorded. In spectrum simulation, three-
domain models were assumed where 17 parameters were subject to optimization.

The hybrid evolutionary algorithm was run with the population size of 200,
number of generations 100, crossover probability 0.7, mutation probability 0.05,
and hybridization operator probability, i.e. the execution of downhill simplex on
randomly selected solutions, 0.01. The optimization algorithm explored the param-
eter search space shown in Table 1 for each spectral domain.

Two sets of tests were performed. Initially, the robustness of the optimization

Table 1: Search space considered in parameter optimization for each of the three
spectral domains.

Spectral parameter Unit | Min. value | Max. value | Step size
Order parameter S - 0.02 1 0.005
Rotation correlation time 7, | n$ 0.1 3 0.05
Broadening constant W mT | 0.02 0.3 0.005
Polarity correction factor p4 | - 0.8 1.2 0.001
Polarity correction factor p; | - 0.9998 1.0002 0.000002
Weighting factor d - 0.01 0.99 0.005
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technique was verified on Lipo(PL). Afterwards, spectral parameter optimization
was performed on all three problem instances and the results compared with a pre-
vious version of the parameter tuning software using the downhill simplex method.

4.2 Testing the robustness of the optimization technique

Tuning of the spectrum simulation model parameters actually means fitting empir-
ical data with the model. A potential weakness of data fitting techniques is over-
fitting which manifests in producing highly accurate results on input data, but per-
forming poorly on previously unseen data related to the same phenomenon. To
test the robustness of our parameter optimization technique against overfitting, we
used the cross-validation method known from the field of data mining [8]. The
experimentally obtained spectral points were randomly divided into ten subsets.
Each subset representing 10% of the entire data was held out in turn, the spectral
parameters were optimized on the remaining 90% of the data, and the quality of
fit was assessed on both samples according to the x% measure given by eqn (1). A
sequence of ten such numerical experiments was performed, representing ten-fold
cross validation.

This test was performed on the Lipo(PL) cell membrane characterization prob-
lem, The results for individual folds are given in Table 2. The average x2 values are
9.3 for the training subsets and 9.7 for the test subsets. These results confirm that
the fit found does not critically depend on the fact that 10% of the data points were
not used in optimization. Similar x? values for the training and test data subsets
also indicate that the optimized spectral parameters do not overfit the empirical
data.

Table 2: Values of x? obtained in tenfold cross-validation on the cell membrane
characterization problem Lipo(PL).

Data subset 1 2 3 4 5 6 7 8 9 10
Training (90%) | 74 | 14.1| 9569 7.7|7.5105]|104103| 9.1
Test (10%) 79 (105104 1929173115 78112119

4.3 Tuning spectral parameters

The hybrid evolutionary optimization technique was applied to the three liposome
cell characterization problems. For its stochastic nature, the algorithm was run
ten times on each problem and the results were assessed statistically. In addi-
tion, its performance was compared with a human-navigated local optimization
technique. This was a stand-alone downhill simplex optimizer, routinely used for
EPR spectral parameter optimization before the new technique was introduced.
The results are summarized in Table 3. It can be seen that the evolutionary opti-
mization method produces repeatable results and outperforms the previously used
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optimization tool not only in the best case but also on average. Further analysis of
the results showed that the actual parameter values found by the two approaches
are comparable.

Table 3: Values of x? obtained in cell membrane characterization on three variants
of the liposome problem.

Optimization procedure | Lipo(PL) | Lipo(PL+GL) | Lipo(PL+GL)-SUC
Downhill simplex 8.6 46.9 16.55

Hybrid EA, average 84109 |[40.2+5.8 15.1£2.2

Hybrid EA, best 1.7 10.5 12.1

The most important practical implication of the new optimization technique is,
however, a substantial reduction of the time spent by a spectroscopist tuning spec-
tral parameters, Traditional single-point optimization techniques, like the one used
previously in our laboratory experiments, require the preparation of promising ini-
tial solutions and navigation of the search according to the empirical knowledge
on the properties of the inspected system. This may sometimes take hours to fit a
single EPR spectrum. On the other hand, the hybrid evolutionary procedure starts
from randomly selected starting points and runs automatically. It needs no human
assistance and therefore releases a spectroscopist from time-consuming optimiza-
tion and allows him/her to focus on the experiment.

5 Conclusion

A hybrid evolutionary algorithm for optimization of parameters in EPR spec-
troscopy was presented along with the results demonstrating its robusiness against
overfitting and its performance in cell membrane characterization. It was eval-
uated on real EPR spectra of liposome membranes where tuning corresponding
biophysical models required 17 spectral parameters to be optimized. An impor-
tant advantage of the hybrid procedure is that it provides a means for automating
spectral parameter optimization, Unlike with less powerful search techniques, the
spectroscopist is no more required to preprocess the solutions and intervene during
the optimization procedure.

Further improvements and studies of applicability of evolutionary algorithms
in EPR spectroscopy are underway. We experiment with knowledge-based genetic
operators accounting for partially known correlations among spectral parameters.
Using these in the stochastic search procedure is expected to result in higher qual-
ity of the fits and/or faster convergence of the optimization procedure. The new
technique is now in experimental use and undergoes tests on a variety of real spec-
tra of various origins and complexities. These activities are aimed at refining the
current test version into a robust tool to effectively support characterization of bio-
logical systems with EPR spectroscopy.
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