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Abstract

This paper is to present a model simulating the mechanical behaviour of soft tissues
based on large displacement theory. In this model, large deformation characteristic
of soft tissues is described with an incremental non-linear geometric equation.
Galerkin weighted residual method is used to produce finite element formulations.
Computer program is written to implement the FEM solution. A software package
is thus created for simulation of the mechanical behaviour of soft tissues in
situations such as surgery and wound care. The numerical model was applied to the
simulation of a hypothetical example of wound suturing. Numerical results from
the analysis are presented and discussed.

1 Introduction

Over last fifteen years, the finite element method (FEM) has increasingly been
adopted as an approach to the analysis of soft tissue [1] and has found application
in various areas. Much research has been carried out using FEM without including
geometric non-linearity [2][3][4]1[5]1[6][7]. These works have indicated that the
finite element method can be a powerful tool for soft tissue simulation.

One of the typical mechanical behaviours of soft tissues is large deformation
even under normal working conditions ([8]). Geometric non-linearity should be
considered in soft tissue modelling in order to take account of the large deformation
behaviour. Lott-Crumpler and Chaudhry [9] have applied the finite element method
to investigate the optimal patterns for suturing wounds of complex shapes to foster
healing. In their investigation, non-linearity of the geometric equation was
included. A detailed description of soft tissue simulation including geometric non-
linearity was presented by Maurel et al [10].
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The approach to derive the finite element formulation adopted by Maurel et al
{10] was based on the virtual work principle. A number of studies in the area of
classical nonlinear mechanics have been carried out on finite element analysis
considering geometric non-linearity based on the virtual work principle [11]
[12][13][14].

With the virtual work principle approach, it is not easy to address the problem of
coupled mechanical and hydraulic behaviour of media. A study has been carried out
to derive the finite element formulation including the geometric non-linearity based
on Galerkin weighted residual method [15]{16]. This approach will here be further
developed for the simulation of the mechanical behaviour of biological soft tissues.

In this paper, a numerical approach considering the geometric non-linearity is
presented for the simulation of biological soft tissues. Geometric non-linearity is
considered through an incremental approach. Nonlinear finite element formulation
is derived based on the Galerkin weighted residual method. The numerical model is
then applied to the simulation of a hypothetical example of wound suturing.

2 Theory

In the traditional area of mechanics, the displacement, the deformation or the strain
of materials such as steel or concrete are required to be ‘small’ under working load,
otherwise mechanical failure may develop or the engineering products may not
work properly. In these circumstances, small strain assumption can be used in the
theoretical description of the mechanics of such materials and the theory of
elasticity can produce very accurate results.

However, materials like soft tissues, such as skin are highly deformable. The
high deformability allows soft tissues to stretch and turn in large magnitude that is
required by organisms under normal working conditions. The small strain
assumption in this case is not appropriate. To describe the large deformation needs
to consider the geometric non-lincarity. The theoretical description of the large
deformation theory, namely, nonlinear mechanics can be found in a number of
books (Basar and Weichert, 2000).

In the following sections, an approach is presented to produce a finite element
formulation based on the established nonlinear mechanics.

2.1 Geometric non-linearity

One of the strain measures describing large displacement is Green-Lagrange strain
which is defined in the initial Cartesian coordinate system. The Green-Lagrange
strain tensor can be expressed as
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where u is displacement vector, X is coordinates and i and j are subscript indices (1,
2 and 3). In small deformation theory, the third term on the right side of equation
(1) which is nonlinear is ignored.

The incremental strain can be expressed as

. 1{8Au, OAu;| 1(8Au, du, du, BAu,
AE = - -+ +— + (2)
20X, &X,; 2l X, &X, oX, X,

The incremental strain AE is linear with respect to the incremental displacement Au.
This is one of the advantage of incremental model.

2.2 Stresses and incremental stresses
In nonlinear mechanics, definitions of three stress tensors are in general use, viz.
the Cauchy stress tensor o, the Piola-Kirchoff first stress tensor P and the Piola-

Kirchoff second stress tensors S.

The relationship between Cauchy stress tensor ¢ and the Piola-Kirchoff second
stress tensor P is described by

S=JF'o(F )" (3)

where J is the determinant of the gradient tensor F and the superscript T is indicates
transposition of the matrix.

The relationship between the Piola-Kirchoff first stress tensor and Cauchy stress
tensor is

P=JF's 4

The relationship between the Piola-Kirchoff second stress tensor and the Piola-
Kirchoff first stress tensor is

S=PF™")" (3)

In this paper, the incremental form of the Piola-Kirchoff second stress tensor, AS is
used as the basic variable. The incremental form of the Piola-Kirchoff second stress
tensor is also symmetric. The total Piola-Kirchoff second stress can be obtained by
adding together all the previous increments of it. Cauchy stress does not have such
additive relationship.
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Although Green —Lagrange strain and Piola-Kirchoff second stress are defined
in terms of initial coordinates, they actually follow the material coordinate system.
So the directions of the Green —Lagrange strain and the Piola-Kirchoff second
stress vary, as does the material coodinate system. It is apparent that the Cauchy
stress tensor defined in the current Cartesian coordinate system, is a better choice
for displaying results.

2.3 Equilibrium equations

Normally, in the virtual work approach, equilibrium equations of forces are not
prerequisite but are arise from the virtual work equation. In the approach adopted
here, the equilibrium equations are needed. These equations together with the
geometric equations and constitutive equations will lead to the establishment of the

required governing equations.

The equilibrium equation of forces defined with respect to the initial coordinate
system is

2
2 (P)+f=0 6
ax()+ (6)

where f is the body force.

Differentiating both sides of the equation (6) yields

% (A(F)S + FA(S))+ Af =0 7

Equation system (7) are the incremental equilibrium equations.
2.4 Constitutive relationship

The general form of the three-dimensional incremental constitutive relationship can
expressed as

AS =DAE ®
2.5 Numerical solution and computer code
It is very difficult to obtain an analytical solution from the model, so a numerical

method, in this case, the finite element method is employed to derive an
approximate solution. Numerical discretisation can be achieved by applying
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Galerkin’s  weighted residual method. The numerical solution was then
implemented in a computer code BAFEM written with FORTRAN 90,

3 Application

To illustrate capabilities of the model, a 2D analysis of a partly sutured “wound” is
presented.

3.1 Problem descriptions
The analyzed domain is 10 cm long and 2 ¢m thick with a V-shape “wound”

located at its middle as shown in figure 1. The mesh generated using quadrilateral
elements is illustrated also in figure 1.

Figure | Analysed domain and mesh

A fixed displacement boundary condition was applied at the bottom boundary in
both directions. Displacements at the side boundaries were fixed in the X direction
and not constrained in the Y direction. Suturing of V-shape wound was
implemented by “stitching™ together the nodes on each side of the wound, so that
ten stitches were required to complete the suturing of the whole wound. In this
simulation the lower seven stitches have been inserted. Initial stress and strain were
assumed to be zero.

Incremental Hooke’s law was assumed as the constitutive relationship for soft
tissue. According to Fung (1993), the Young’s modulus of some skin tissues is
around | Mpa, so this value was used. No data has been found for the Poisson’s
ratio, so a Poisson’s ratio of 0.4 was assumed here.

3.2 Results and discussions

The results of displacements is plotted against the deformed tissue domain in
figures 2, 3 and 4.

The contours of displacement in X direction after seven stitches are completed
are demonstrated in figure 2. The displacement in the X direction is anti-symmetric,
because wound suturing causes the soft tissue at the two sides of the wound to be
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pulled towards the centre line. The tissues at the left side of the wound are pulled
towards right and vice versa. The largest displacements occur near the suturing
sites, which is physical sensible.

The contours of displacement in the y direction after insertion of seven stitches
are illustrated in figure 3. Displacements within the blue to orange colour range are
negative, ie., the solt tissues in these zones were pulled downwards.  The
displacements in the dark red colour zone are positive, meaning that soft tissues in
these zones are squeezed upwards. This is the reason that an arch-curved skin
surface 15 observed from the simulation. It is interesting to see that suturing can
result in such a complex displacement pattern even in only 2D,

The contours of the total displacement of the displacement vector are displayed
in figure 4. Because the displacement vector has two components, one in the X
direction and one in the Y direction, figure 4 is actually the synthesis of figure 2
and figure 3. It can be scen that the largest displacements occur at the places near
the suturing site. The more remote is the location from the suturing site, the smaller
is the displacement.

The vector of the first principal Cauchy stress is displayed in figure 5. The
length of the vector lines indicates the magnitude of the stress. The direction of the
vector lines is the direction of the stress. Understandably, the largest siresses
occurred at the places of the suturing site. It can be seen that the magnitude of the
stresses along the suturing line varied considerably. The stresses at the lower
stitching sites are very small compared with the stresses at the upper stitching sites.
The first principal stresses in the area below the suturing site are the smallest.
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Figure 2. Contour of displacement in X direction
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Figure 3: Contour of displacement in Y direction
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Figure 4: Contour of total displacement
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Figure 5 Vectors of the first principal Cauchy stress near the suturing site
4 Conclusion

A numerical approach has been presented to simulate the large deformation
behaviour of soft tissues. Overall, the model produced reasonable results. The
numerical simulation revealed detailed stress and displacement information in the
analysed domain that would be potentially useful in studies of soft tissue
mechanics. The main features in the results are explainable in terms of the applied
attachment forces and resistance due to deformation of the elastic soft tissues.
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