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Abstract

It is demonstrated that diffusion becomes the dominating factor in lower branches
of the respiratory duct of humans. A novel mathematical model, based on
transport through porous media, for simulating numerically the spatial and
temporal gas diffusion process within the alveolar region of the lung is discussed.
The model depends on a representative physical property of the alveolar region
termed effective diffusivity, function of the diffusivity, solubility, morphology and
interface topography of each alveolar constituent. Unfortunately, the direct
determination of the effective diffusivity of the alveolar region is impractical
because of the difficulty in describing the internal geometry of each alveolar
constituent. However, the transient solution of the macroscopic model can be
used in conjunction with the lung diffusing capacity (measured in a clinical
setting) to determine the effective diffusivity of the alveolar region. With the
effective diffusivity known, the three-dimensional effects of red blood cell
distribution on the lung diffusing capacity can be predicted via numerical
simulations. The results, obtained for normal (random), uniform, centre-cluster,
comer-cluster, and several chain-like distributions, unveil a strong relationship
between the type of red cell distribution and the lung diffusing capacity. Further,
it has been investigated what effect on breathing performance is produced by the
presence of passive particles in the alveolar region.

1 Introduction

Lung diffusion capacity is the lung capacity to exchange oxygen and carbon
dioxide. The search for a universal correlation between the lung diffusing
capacity and the physical properties of each individual lung alveolar constituent
has been a major research trust [1]-[6]. Existing theories for estimating the lung
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diffusing capacity are limited by the difficulty in characterising the incredibly
complex internal geometry of the alveolar region, including the distribution of
red blood cells within the capillary bed [7].

The lung diffusing capacity is a lumped parameter that can be estimated
from relatively simple measurements ([8]-[10]) and used to indicate
abnormalities in the respiratory diffusion process. However, it is difficult to infer
from variations in the lung diffusing capacity the precise cause of the abnormality
because the sensitivity of the lung diffusing capacity to local changes in the
morphology and functionality of the lung is not well known. There is a need for
linking the local diffusion process occurring within the alveolar region to the
measurable variations in the global lung diffusing capacity parameter.

These observations provide grounds for seeking the development of suitable
models that simulate locally the gas diffusion process inside the alveolar region
of the lung. Using the classical gas diffusion equation at the alveolus-erythrocyte
{microscopic) level within a lung has two major disadvantages:

(1) The dimensional scale of the domain ranges from decimetres to microns,

requiring a tremendous numerical resolution.

(2) The complex internal alveolar structure (topology of each constituent) is

extremely difficult to access and to map.

This article is a firther study of the novel macroscopic model [11] for
simulating the gas diffusion within the alveolar region of the lung. This model
intends to overcome the scale and structure difficulties, and can be used for
preliminary simulations of steady processes. A by-product of this model is the
introduction of a macroscopic transport property of the alveolar region, called
effective diffusivity. As defined, this property depends on the internal structure of
the alveolar region, bringing back the very same structure-related problem the
model originally intended to overcome.

2 Mathematical modelling

In the human respiratory system, air flows through the nose and/or mouth through
the larynx where the epiglottis valve directs the air towards the trachea. The
trachea presents a smooth wall covered with ciliary cells that operate like brushes
moving the mucus secreted by other cells up the respiratory tract to be expelled
via nose/mouth (coughing) or via digestive system (swallowing). It is also along
the trachea that temperature and humidity of the incoming air are equilibrated
with the body condition.

The incoming air keeps moving down through the trachea, which eventually
splits into two bronchial tubes (the primary bronchi, generation z = 1, shown in
Fig. 1), one for each lung. The bronchial tubes are highly elastic and are
surrounded by smooth muscle to allow for constriction and dilatation.

The bronchial tubes undergo a series of splits into smaller tubes as the air
enters deeper into each lung. The first of these splits is to divide air to each lung
lobe through the secondary bronchi. When the bronchial tubes attain diameters
smaller than one millimetre, they are then called bronchioles (BL, generation z =
4, Fig. 1). The terminal bronchioles (TBL, generation z = 16) limit the
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conductive zone (no gas exchange) of the respiratory tract. The conductive zone
is followed by a transition zone with respiratory bronchioles (from generation z =
17 to z = 19) and a respiratory zone (from generation z = 20 to z = 23) with
alveolar ducts and alveolar sacs. It is in the respiratory zone, where most of the
gas exchange takes place.

Observe that the number of bifurcations and the reduced cross-section of the
flow passage hinder convection as a gas transport mechanism at the alveolar
level. It can be shown that the predominant gas transport mechanism in the
alveolar region is by diffusion.
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Figure 1; Schematic representation of the respiratory duct of humans (Shields).
2.1 Diffusion dominance in the alveolar region
In fact, the effective diameter of the air-ducts can be estimated as d, = d; 273
where a characteristic dj (diameter of the trachea) is equal to 1.8 cm. The mass

conservation requirement, written for different bifurcations (branches) of the
respiratory duct, becomes

U, A,N(2)=Ugdy =V, (1)
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where U, is the average velocity in z-th tube; N(z) =27 is the number of
branches at z-th generation; A4, = (7[(122)/4 is the cross-section area of a single

branch; and ¥ is the volumetric gas uptake in m’/s. Note that the power law for
the average velocity follows from the mass conservation:

U, =Uyx27%"?, 2

As for the volumetric gas uptake, its value, according to physiological data,
equals 3000 ml / min. On average, there are 12 breathing cycles per min. A
single cycle consists of the inhalation phase (duration 2 s) and the exhalation
phase (duration 3 s). Therefore, about 24 s/min are spent for gas uptake. Thus,
under the normal breathing condition (the lowest metabolism), the volumetric gas

uptake can be estimated as V=125x10"m®/s.
The local Reynolds number as well follows the power law, namely

Re, = Re,x2 %3, (3)

Now, from the point of view of mass transport, the distance from the origin of
motion, in the case of diffusion transport, is

5~ (D1}, @

where D, is the effective diffusion coefficient of the domain in question and ¢

is the time scale of the transport process. In the case of transport by convection,
however, the same distance must be estimated as

6~Ut, (5

where U is the average velocity of motion.
Consequently, in terms of the time required for each of these two possible
transport processes, one can write:

tag ~ 07/ Doy (6)
and

ooy ~O1U . @)

That one of the processes is chosen, for which the time required to deliver mass
to the same distance is shorter (the least action). Therefore, from ¢ af =t _ it

follows that

CORY

Re = U =
2

1. (8)
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It is clear that if the local Reynolds number is smaller than unity, i.e.,
Re <Re =1, then diffusion dominates (almost no flow/convection is possible
below this scale). When, however, the local Reynolds number is larger than
unity, i.e., Re > Re" =1, diffusion becomes ineffective as a transport mechanism
and convection fully dominates.

Requiring Re, =1 in equation (3), it becomes possible to estimate the
generation number, starting from which convection becomes less effective and
diffusion grows the dominant transport process. Then,

.3
22

For the critical value of the Reynolds number (transition to the turbulent
flow in a pipe), Re, =Re,, =2300, for instance, z =16.75~17. That is, at
least 17 bifurcations are required in order to kill turbulence at the trachea and
make diffusion dominant below z* generations of bifurcating respiratory ducts.

The simple scale analysis presented above amazingly well corresponds to

physiological data (see Fig. 1 — the respiratory sacs begin to appear at exactly the
seventeenth generation).

z

InRe, =2.164xInRe,. %)

2.2 Macroscopie diffusion equation

It has been shown in [11] that the following macroscopic transient diffusion
equation can be used in order to describe the process of alveolar gas diffusion:

EﬂzDeﬂV2(P), (10)

where (P) is the average partial pressure of the diffusing gas (e.g., CO, Oy).
The equivalent effective diffusivity of the alveolar region, D,; can be

determined by simulating numerically the single-breath CO-diffusion procedure
done in the laboratory and by comparing the lung diffusing capacity obtained
from the numerical results to the lung diffusing capacity obtained experimentally.
Once determined, the effective diffusivity can be used with the three-
dimensional, transient macroscopic diffusion model to investigate the effects of
red cell distribution on the lung diffusing capacity.

It has to be noted that the difference between the effective diffusion
coefficient, D, and the lung diffusing capacity, D;, has to be clearly

understood. The former is a physical property of the domain (alveolar region)
and is independent of boundary conditions. The latter, on the contrary, strongly
depends on the boundary conditions and is not a physical property of the domain.
This can be simply illustrated as follows.

By separating the time variable in the macroscopic diffusion equation (10),
this equation reduces to the ordinary differential equation for the transient
function G,
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§+erﬂc=o, (11)

and the Helmholtz equation for the spatial function F,
V2F+KF =0, (12)
where K is the separation constant and the functions & and F are such that
(P(x,y,2,6) = G(t)F (x,,2) . (13)

The separation constant, K, can be found by satisfying the boundary
conditions imposed on the Helmholtz equation and, hence, is dependent on those
conditions. The general solution of equation (11) is

G(1) = G(0)exp(=D,1) , (14)

where D; =KD, represents the diffusing capacity. It is clear that, although

directly proportional to the effective diffusion coefficient, the diffusing capacity
depends on the boundary conditions of the problem, because K is the boundary
conditions dependent.

2.3 Lung diffusing capacity and single breath tests

The lung diffusing capacity obtained in laboratory results from unsteady
processes, such as the diffusion process during the single-breath technique [12].
This technique consists of having a subject inhaling a gas mixture with a low
concentration of CO, and holding it in for a certain period of time. During this
time, CO will diffuse from the gas region of the alveolus to the RBC's. The
process 1s unsteady because the potential gradient driving the diffusion varies
(decays) in time.

The lung diffusing capacity of the alveolar region can be obtained from the
single-breath technique results using the Krogh equation ({12], p. 351),

(2)0-(p), o -2 . as)

° A

where <P) is the initial value of the volume-averaged partial-pressure, the
Yo

reference pressure P, is chosen as the total pressure of dry gases (equal to
9.51x10* Pa, or 713 mm Hg), and ¥, is the alveolar volume equal to the inspired
volume plus the residual lung volume (a representative, normal, value for ¥, is
4,930 ml STPD).

The characteristic time constant for the diffusion process, according to eqn.
(15), is V/(DLP,y, typically equal to 24.4 s (using V,; = 4,930 ml, D; = 17
mlco/mmHg min, and P, = 713 mmHg)., Notice that using the diffusion and
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solubility laws ([12], p. 350), it is possible to show that the lung diffusing
capacity of oxygen is about 1.23 times the diffusing capacity of carbon
monoxide. Therefore, the corresponding characteristic time for diffusion of
oxygen is approximately equal to 20 seconds.

Note that the solution of eqn. (15) leads to an exponential decay of (P)v

with time. The lung diffusing capacity can be obtained easily from the partial-
pressure results by rearranging eqn. (15),

D, =%ln{%} (16)

During clinical single-breath tests, eqn. (16) is used for determining the lung
diffusing capacity by measuring ¢ and (P)v(t).

To use the single-breath test results it is necessary, then, to model the
diffusion process as occurring during the experimental measurement of Dj.
Unfortunately, this means that the transient term of the macroscopic diffusion
model must be retained. The model equation becomes then dependent on D,y a
quantity not known a priori.

However, the transient diffusion equation (10) can be used with an estimated
D,y value, in a numerical simulation mimicking the single-breath test. As a first
estimate, the D,y value obtained from the steady-state analysis of Kulish et al.
[11] (independent of D,5) can be used to determine the time-evolution of the
volume-averaged CO partial pressure. Once the results are obtained, a lung
diffusing capacity D; can be found from eqn. (16).

This D, value is not expected to match the lung diffusing capacity found
experimentalty, because the initial D,y value (obtained from the steady-state
results) was just an approximation to the correct value. Therefore, a new initial
estimation of D is used to simulate again the diffusion process. The new results
yield a new value of D, to be compared against the experimental value. A
predictor-corrector iteration scheme can then be used to fine-tune the D,; value
used in egn. (10) until the expected (measurable) D; value is obtained from the
numerical results. Resulting from this procedure is the correct Dy value.

3 Numerical simulation and results

Three-dimensional, transient numerical simulations of alveolar CO diffusion,
mimicking the single-breath test, is performed by discretising eqn. (10) using
finite differences (central-difference), and solving the algebraic equations within
a representative alveolar cubic domain for different RBC distributions, namely:
random, uniform, chain, centre- and corner-clustered.

The initial condition for the numerical simulations is (P) H= (P) 0o=133.3

Pa (= 1 Torr) everywhere within the cubic domain, except at the RBC locations
where the partial pressure of CO is always equal to zero, i.e., <P> n =0. The
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domain boundary is set as impermeable to gas diffusion, therefore, 6<P)/ on=0

at the boundary, where » is the coordinate along the direction normal to the
boundary. The red cell density, defined as the ratio of RBC total volume to the
volume of the representative elementary volume, is p =0.034, a value consistent

with 45 percent hematocrit (alveolar region). The cells are distributed randomly
within the domain. Additional details of the numerical procedure can be found in
[13].

The estimated effective diffusion coefficient found numerically by Kulish et
al. [11] from the steady-state simulations, D,y = 9.4%107 m%s, is used in eqn.
(10) as a first guess to simulate the transient process within the alveolar region.

After several iterations, it is found that Dy = 2.68x 107" m%s yields results from
which D;, obtained from eqn. (16) with ¢ = 10 s, matches the value assumed as
representative of random RBC distribution, D; = 17 mlco/(min mmHg), to within
one percent.

First, the time evolution of CO partial pressure in the course of the single-
breath transient simulation for random, uniform, and clustered RBC distributions
was obtained. Next, a more realistic "chain-like" distribution of capillary RBCs
was simulated. A chain of RBCs is generated by placing the first RBC
somewhere in the discretised domain (at a certain grid-node). A single-file of
RBCs is formed starting from this cell by consecutively following a random path
within the cubic domain, from grid-node to grid-node, with each RBC having at
least one neighbouring RBC. The random path of RBCs is continued until the
target volume density of RBCs within the domain (3.4 percent) is achieved.

The starting point of the chain varies from the centre to the comer of the
domain, along one of the diagonals. A half-chain distribution refers to a chain
having the first cell placed halfway between the centre and the corner of the
domain. A guarter-chain distribution refers to a chain having the first cell placed
a quarter of half-diagonal length from the corner of the domain. Corner-chain
and centre-chain have their first cell placed at the corner or at the centre of the
domain, respectively.

Trying to quantify the location-versus-distance effect of red cell distribution,
two geometrical parameters to help characterise each distribution were devised.
One of these parameters is the distance between the geometrical centre of the red
cell distribution, defined by the co-ordinates (XY, Z,), and the centre of the
domain at (X, Y5, Z;). The co-ordinates of the geometrical centre of the red cell

N

. 1

distribution are found from (X e Yo Z, C)= NZ(x,-, yi,z,-), where (x;,11,2;) are the
i=l

co-ordinates of each red cell, and N is the total number of red cells in the domain.

Hence, the distance to the centre of the domain is simply,

5 172
d =[x f +(2. -2, +(2.- 2 F]
The other geometrical parameter characterising the red cell distribution is the

. . e /2 )
effective radius of the red cell distribution, r= (rx2 +ry2 +rzz)' , with
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A large d-value indicates the cell distribution is far from the centre, hence,
close to the boundaries where the diffusion process is less effective. A small »-
value indicates the red cells are close together, maybe forming a cluster, also
leading to a less effective diffusion configuration. Hence, d and # are in principle
two good candidates for quantifying the sensibility of the lung diffusing capacity
to the three-dimensional red cell distribution.

Values of d and » normalised in respect to the diagonal half-length of the
domain, and values of D; for each red cell distribution normalised by the normal
D; value are summarised in Table 1. Observe first that the uniform and centre-
clustering distributions are not perfectly centred in the domain. This is because
the number of red cells necessary to reach 3.4 percent red cell density does not
allow a perfectly symmetric distribution in relation to the centre of the three-
dimensional domain. The distortion caused by this effect, however, is minor.

The random and uniform distributions have very similar d and r, and that is
why these two distributions yield very similar D;. The d and r values for the two
cluster distributions indicate that 4, varying by 270 percent, is not very influential
on the value of Dy, varying only 29 percent.

Based on these observations, the normalised lung diffusion values are plotted
versus the normalised radius of distribution, shown in Fig. 2. The continuous
line is a polynomial curve-fit, namely

D 2 3 4
L =—1.6£+19(1J —68(Lj +93[1] (17)
D,_, s s s s

Observe that £7.5 percent error bars are also depicted in Fig. 2, a deviation
effect attributed to the parameter d not accounted for in eqn. (17).

Further, solid micro-particles were incorporated into the same domain
together with the random distribution of RBCs. Those particles were considered
as having size of the same order as the size of RBCs. The particles were
modelled as an additional (besides RBCs) 'internal' boundary condition such that,
for the nodes occupied by them, the mass flux from all (six) neighbouring nodes
was kept equal to zero in the course of computations. Obviously, the amount of
mass accumulated on the 'particle’ nodes was not counted during the averaging
procedure.

The numerical experiments were carried on for the values of concentration
within a range 0 — 50 per cent. The density of randomly distributed RBCs was
kept at 0.034, corresponding to the most realistic case. For each concentration
value, the lung diffusing capacity was determined. The result is shown on Fig. 3.

Within the practically interesting range of concentrations of particles, i.e.,
0<C<0.5, the lung diffusing capacity can be quite satisfactorily calculated as
the function of the particles concentration by use of a simple formula, namely

D,(C)=D,(0)-10C. (18)
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Fig. 3 : Lung diffusing capacity versus concentration of particles.
4 Conclusions

The novel macroscopic model of alveolar gas diffusion developed in [11] has
now been tested as the transient three-dimensional numerical simulation of the
process for different RBCs distributions. The relationship between the
normalised lung diffusing capacity and the parameters characterising an RBC
distribution has been established. Provided that the lung diffusing capacity
appears to be quite sensitive to the RBC distribution, the hope exists to use this in
future for diagnostics of some respiratory diseases.

Another important conclusion, which can be drawn from the present study, is
that the Jung diffusing capacity is not very sensitive to the presence of solid
micro-particles in the alveolar region.
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