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Abstract

A brain blood structure is extracted from MRI (Magnetic Resonance Imaging)
voxel data of a head, and modeled for CFD (Computational Fluid Dynamics)
analysis. In order to treat complex structure of the blood vessel with branches,
we introduce two major techniques in the blood flow simulation; a high-accurate
numerical scheme IDO (Interpolated Differential Operator) which has been
developed to solve Navier-Stokes equation as a compact scheme by using local
Hermite interpolation, and AMR (Adaptive Mesh Refinement) method to gather
fine meshes around the blood flow in Cartesian grid to describe the geometry of
the vessel accurately keeping less computation. The computational results show
the spatial profile and the temporal change of the velocity and the pressure. It is
possible to find the high pressure area in the brain, and the branch ratio of the
blood flow for several cases.

1 Introduction

In the biomechanics, Computational Fluid Dynamics (CFD) is becoming a strong
tool for diagnostics in the cardiovascular system. Blood dynamics is of
multi-scale physical phenomena and the vessel structure consists of hierarchy
branches with complex geometry. Conventional numerical method such as Finite
Difference Method is not applicable even if a boundary fitted coordinate is used.
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In moving boundary case, there is a severe problem of mesh generation in Finite
Element Method. We use Adaptive Mesh Refinement (AMR) method on
Cartesian grid in which fine meshes are introduced adaptively in the region with
complex structure. For more realistic study, the elastics of the blood vessel has to
be taken into consideration and fluid-structure interaction becomes important.

2. Blood vessel structure extracted from MRI data

Recently, high-resolved medical diagnostics images can be obtained from X-ray
CT scanning or MRI devices. It is possible to extract the blood vessel structure
from the accumulated voxel data. Figure 1 shows the slice image of a head, and it
was taken at the MRI device of Department of Medical Imaging, National
Institute of Radiological Sciences. We change the transfer function of the volume
rendering, and the blood vessel becomes strike in Fig. 2. The blood structure is
able to be extracted by connecting the voxel having the same intensity range of
the signal.

Figure |: Sectional view of the Figure 2: Volume rendering image
MR] data of a head. after the change of transfer
function.

Figure 3 shows the vessel structure after one smoothing process however the
surface of the vessel is still rough due to the noise mainly coming from the
duration time of the diagnosis. It is difficult to use this structure for a numerical
simulation as it is, so we propose a modeling for the blood vessel based on the
extracted structure. It is assumed that the continuity of the blood vessel and
drastic change of the vessel radius is not acceptable.

Figure 3: Extracted vessel structure.

The blood vessel structure is modeled by the center lines and the radius as
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illustrated in Fig.4. The process to generate the structure of Fig.4 from the MRI
data is not purely automatic. The judgment of the bifurcation and separation of
the blood signals from the noise in the narrow vessel compatible with the image
resolution has to be done by using the medical knowledge.

Figure 4: Blood vessel modeling obtained from MRI data.

3. Numerical Scheme using high accurate interpolation

We have developed a numerical scheme ‘Interpolated Differential Operator
(IDOY for solving hyperbolic, ellipsoidal and parabolic differential equations[1].
The IDO scheme is constructed on the basis of a discretized space (grid points)
such as FDM and FEM. The dependent variables defined on the grid have a
spatial profile spreading over the local area that covers several grid points. The
profile should be an approximate solution of the governing PDE within the area.
The IDO scheme requires a spatial interpolation to describe high-order spatial
derivatives.

The given equations are solved in the original differential form described
by the primitive variables, We regard the derivative terms appearing in the
equation as differential operators, and we use the equations derived by temporal
and spatial differentiation. We consider the following equation,

fi=3.7 M
where the subscripts ¢ and x denote the time and spatial derivative operation,
respectively. The symbol 3 stands for a spatial differential operator. By taking

time derivatives of eq(l), we have a series of the equations
f,=3.3.f :f,=3,335.f, ' ,and so on. In the IDO scheme, we do not

use any finite difference expressions, but 3 and higher derivative terms
yftdff p , but 3 and higher derivat t

operate on the interpolation profile F(x) directly.
The IDO scheme has been applied to various fluid problems; compressible
Rayleigh-Taylor instability, dendritic solidification, shallow water equations of
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global ocean model, incompressible flow around falling leaves and so on, and
good results have been obtained. Several new techniques as Cut-Cell method,
Overset grid and Adaptive Mesh Refinement method were introduced in these
studies.

In the IDO scheme, the spatial profiles of the dependent variables are obtained
by spatial interpolations covering several grid points. It is possible to use various
interpolations that can describe accurately the spatial derivatives, and in this
paper we use a Hermite interpolation that is determined by matching conditions
of both the values and the derivatives. The Hermite interpolation has enough
accuracy and compactness, since the local interpolation uses only neighboring
grid information. We use two kinds of interpolation whose interpolated domain is
different.

Now we consider the interpolation function around the i-th grid point in
one-dimensional case. The dependent variables f and f, are assumed to be
given at all the grid points. In general, numerical information propagates in all
the directions, so that the interpolation has to cover the area from i-1 to i+1. The
Hermite interpolation P(x) is obtained by the four matching conditions of
P(-Ax)=f_, , &£P(-Ax)= Jeia s PAX)=f., , and £P(Ax)=f,,. . The
coefficients of the fifth-order polynomial (Kondoh, 1995) are determined as
follows,

s 2
Px)=ax’+bx* +e X’ +d x* + f, x+ [,

@

a, =- 4Ax5(fM fi—1)+4Ax4

bc =____4(f;+l _zf; +ﬁ—l)+

(fem 4+ 1)

2 Ax3 (fom = L)

c 4Ax3 (f;+1 f; l) (f;:r+1+8f:u+f;u 1)

=F(f;+l_2f _f; ]) (fx,u’] fx\l'—l)

The derivatives higher than /, are obtained by taking differentiation of the
interpolation function with respect to x. At the i-th grid point, we have

fngfP(O)=2dc , fm=§;—P(0)=6{:€ , fm=§%P(0)=24bc and
e =120a, , and higher derivatives are zero.

Another interpolation is used for the advection term uf, ; for example,
/, +uf, =0. We call this upwind interpolation. When the advection velocity u is

positive, the interpolation covers the area from i-1 to j-th grid. The interpolation
function has the following third-order polynomial
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F(x)=ax’ +bx*+ f x+f, 3)

where the coefficients g, and b, are determined by the matching conditions
F(-Ax)= f,,, &F(=Ax)=f,,, so that we have

=(fx,: +fx.l—l) _z(fl _f;—l)

“ Ax? AP
b = (zfx‘, +fx,i—1) 3(f, _f.‘—l)
w = - 2
Ax Ax . (3-1)

In the case of u < 0, the interpolation covers the area from / to i-+1-th grid point,
and the coefficients are derived by the conditions F(Ax)= f,,,, £F(Ax)=f, ..,
as follows,

= (fx,i ;’x{x.m) +2 (f:A_x{Hl)
b :_(fo_f + fon) B (f, = fia)
“ Ax Ax® (3-2)
The derivatives higher than 7 are obtained by taking derivative of the
interpolation function as fi, =2 F (0)=2b, and [, =2 F (0)=6a, at the
i-th grid point, and higher derivatives more than 7, are set to be zero.

In the IDO scheme, the derivative terms included in partial differential equations
are classified into advection term and non-advection term, and the above two
interpolations are applied selectively.

3. 4-th order SMAC Algorithm

In order to solve incompressible Navier-Stokes equation, we adapt SMAC
algorithm. First, we solve the following equation, that is, the Navier-Stokes
equation without the pressure gradient term.
ou +u-Vu= LAu 4)
ot Re
The current velocity 4" is advanced to #* by the following 4-stages Runge-Kutta
method.

o), K-Sl )

( +— KAtu+2KAtj K, =

au—”(u" +1K1At, u; +le,At]s
o 2 2
( +1KAtu+le2AtJ K, =2l L wr v Lk ar):

2 2 at 2 2
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5
K, = a't‘(u T AL U+ KA, Ky = gt (" + K00, U7 + K o0
K2k, zzK3 PKen g Kat2Ka gzkﬂ Ko ()

The intermediately advanced u” and u,” are corrected by the pressure gradient
term so as to satisfy the incompressible condition V -u = 0, as follows.

u™ =u" —Vp Al u =u,-Vp, -At (6)
The pressure used in the above equation is obtalned by solving the Poisson
equation,
= (N
Ap = At

The 5-th center interpolation is applied to the derivative terms in eq.(6). In order
to show the accuracy of the Poisson solver of IDO scheme, one-dimensional
Poisson equation f,, = pis examined, where p is the source term. For the
dependent variable f, the IDQ scheme solves the original Poisson
equation £ =p, For another dependent variable £, we use the additional

equation F,_=p_ derived by taking differentiation of the original equation,
and F is the interpolation function. The explicit descriptions of the discretized
formula are written down as follows,

—z—z(f,ﬂ 24 )5 (fm fu)=n,
, ®

(fx1+l+8fx1+fle) pxl

s S =L~ 2Ax2 ©

2Ax3

In the case of p=sin{kx) for0<x<Z and k=4n/L, we estimate the
numerical error by the formula

Z(sm(kx )_ff)2
i=l

Finite Center e
Difference &~

Error
L3

10

10" . —_
10 w
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Figure5: Accuracy of the result of Poisson equation by IDO scheme. The
triangle markers indicate the result obtained by the center finite
difference method. The solid circles representing IDO scheme
shows fourth order spatial accuracy.

where N is the total grid number and the grid interval Ax = L/(N —1). The

boundary conditions at x =0 (= 1)and x = L (i = N) are set to be
fi=fy=0 andf =7 =k, respectively. The circles in Fig.1 show the

average error ¢ of the [DO scheme with the center interpolation as a function of
Ax for the given domain area 0<x¥<L and it is found that the error has a
scaling of Ax*. As a reference, the results of the finite difference scheme (ﬁJ 2
fi+ ﬁ_l)/sz =p, are plotted by triangular marks, and it has Ax® scaling. It is
understood that the IDO scheme has fourth order spatial accuracy, since the
formula F,, derived from the center interpolation uses five values of the grid
without £, ; according to €q.(7). In the expression of F,,,, f; is not included.

When we consider extending the IDO scheme to multi-dimensional one, it is
natural that we introduce the first order spatial derivative in each dimensional
direction. In the two-dimensional case, the dependent variables £, £, and f, are
required at least, however additionally we introduce £, for the purpose to
interpolate f; in the y-direction and to interpolate f, in the x-direction, The
introduction of f,, closes a series of the equation self-consistently. Similarly, we
use a set of the 8 dependent variables £, £. £, .. fo S fi- and fy;, and it is
necessary to solve § equations to determine these variables [2]. The above
Poisson equation is solved by SOR method, and the convergence of the iteration
procedure is almost same as the second order finite difference case, and it is
possible to accelerate it by multi-grid method [3].

4, Pulsatile Flow into stenosis channel

AS a preliminary check of the blood flow simulation, we study the incoming
flow from the left inlet into the stenosis channel shown in Fig.6 with the
waveform of two pulsatile flows of Fig.7 at a Reynolds number Re = 750 and a
Strouhal number St = 0.024. We use a Cartesian uniform mesh in order to
construct the boundary condition for the blood vessel. The computation is done
on the same condition as Ref.[4].

y

o

0.0 3.0 7.5 16.0 32.0

Figure 6: Schematic view of the computational geometry.
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Figure 7: Waveform of the incoming flow

The snap shots of the vortex profile are shown in Fig.8 (a) — (h). With decrease
of the incoming flow after the time t = 0.4, the pressure at the stenose goes down
so that the vortex are generated in the downstream. These computational results
are in good agreement with that of the reference [4].

e (i) ) t=0.45

(h) t=0.52

Figure 8: Vortex contours at Re = 750 and St = 0.024 with two pulsatile
incoming flow. (a) z = 0.11, (b) t = 0.17, (c) t = 0.22, (d) £ = 0.26, (e)
=034, =041, (g) t =045, (h) r = 0.52.

5. Adaptive Mesh Refinement Approach

A simple uniform Cartesian grid is not suitable for blood flow simulations,
because blood flow region is located with narrow tube structure. From the view



Eﬁ Transactions on Biomedicine and Health vol 6, © 2003 WIT Press, www.witpress.com, ISSN 1743-3525

Simulations in Biomedicine V. 87

point of fluid-structure interaction, Cartesian grid is suitable for moving
boundary problems. In the previous work, we introduce Cut-Cell method to
describe a complex shape on Cartesian grid [5] however there is the resolution
limit to treat a small-size structure. In order to satisfy these two requests, we
introduce Adaptive Mesh Refinement (AMR) method [6] to the blood flow
analysis to keep a high resolution only around the blood vessel.

Figure 9: Mesh structure of the
AMR for the channel
with  the complex
boundary

Figure 10: Vortex profile of the
channel  for  the
constant incoming

Figure 9 shows the grid structure to describe the complex boundary shape, and
the fine meshes are located near the boundary. The vortex profile of the
computational result in the channel for the constant incoming flow at Re = 200 is
shown in Fig.10. More realistic channel flow for the blood vessel is modeled in
2-dimentional case and shown in Fig.11. Fine meshes are located at the branch
regions to keep high accuracy at the points.

Figure 11: Mesh structure for 2-dimensional channel with branches.

The AMR method requires high accurate interpolation at the connection between
different resolution meshes, and the Hermite interpolation works very well. The
IDO scheme can solve Navier-Stokes equation in the non-uniform mesh as 1 : 2
grid distance ratio. Figure 12 indicates the profile of the flow speed for Re = 350
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after the flow reaches the steady state. It is found that the branch ratio of the flow
in the complex tube structure with branches.

Figure 12: Velocity profile of the flow with branches.

6. Conclusions

A brain blood structure is extracted from MRI (Magnetic Resonance Imaging)
voxel data of a head, and modeled for CFD (Computational Fluid Dynamics)
analysis. By using AMR method, it is possible to describe fine structures with
less memory consuming and treat moving boundary problems. IDO (Interpolated
Differential Operator) scheme can solve Navier-Stokes equation accurately in
compatible with AMR method. The preliminary checks of our method are done
and give good computational results. We have a perspective to extend to
three-dimensional case.
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